Facets of Algebraic Geometry
代数几何的各个方面
基本信息
- 批准号:1904591
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Facets of Algebraic Geometry" will take place October 18-20, 2019 at the University of Michigan, Ann Arbor. The conference will focus on recent developments and promising directions for future work in the rich research areas of algebraic geometry near the interface with combinatorics. It is well-known that many of the central objects of study in algebraic geometry have intricate combinatorial structures. Furthermore, sophisticated tools from algebraic geometry, intersection theory, and the cohomology of varieties have led to deep results on purely combinatorial questions. The conference will bring together early career and established senior mathematicians working in combinatorial algebraic geometry. Preceding the main conference there will be a day devoted to activities organized by and for young mathematicians.The topics to be covered in the conference include the structure of commutative algebraic groups; modern Schubert calculus, including equivariant and non-equivariant quantum $K$-theory of homogeneous spaces, and computational approaches via numerical methods; Chern class formulas for degeneracy loci and applications of such formulas to virtual class computations of syzygetic loci on moduli spaces of curves; intersection theory on moduli spaces and cones of effective and basepoint free divisors on Hurwitz spaces and moduli space of curves; and applications of algebraic geometry and Hodge theory to matroids and combinatorial geometry. Each of these topics has had significant breakthroughs in the past few years. The conference website is https://sites.google.com/view/facetsofalgebraicgeometry/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mircea Mustata其他文献
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata; Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata; Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
A boundedness conjecture for minimal log discrepancies on a fixed germ
固定细菌上最小对数差异的有界猜想
- DOI:
10.1090/conm/712/14351 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mircea Mustata; Yusuke Nakamura - 通讯作者:
Yusuke Nakamura
Mircea Mustata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mircea Mustata', 18)}}的其他基金
D-modules and invariants of singularities
D 模和奇点不变量
- 批准号:
2301463 - 财政年份:2023
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Hodge Filtration on Local Cohomology and Minimal Exponents
局部上同调和最小指数的 Hodge 过滤
- 批准号:
2001132 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Hodge-Theoretic Generalizations of Multiplier Ideals
乘数理想的霍奇理论推广
- 批准号:
1701622 - 财政年份:2017
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Questions on Singularities and Adjoint Linear Systems
关于奇点和伴随线性系统的问题
- 批准号:
1401227 - 财政年份:2014
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265256 - 财政年份:2013
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Invariants of Singularities in Zero and Positive Characteristic
零特征和正特征中奇点的不变量
- 批准号:
1068190 - 财政年份:2011
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Frobenius Splitting in Algebraic Geometry, Commutative Algebra, and Representation Theory
代数几何、交换代数和表示论中的弗罗贝尼乌斯分裂
- 批准号:
0968646 - 财政年份:2010
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
相似国自然基金
和算代数化几何及其中算源流研究
- 批准号:12371001
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
特征为正的多元zeta函数值:Hopf代数结构的研究及其欧拉性相关猜想的证明与应用
- 批准号:12301015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于表示无限型自入射代数上的单纯系统的研究
- 批准号:12301044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数群的表示理论及其在Siegel模形式上的应用
- 批准号:12301016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
- 批准号:
2333970 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
- 批准号:
2401164 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
- 批准号:
2349244 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Continuing Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
- 批准号:
2412921 - 财政年份:2024
- 资助金额:
$ 2.7万 - 项目类别:
Standard Grant