SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems

SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统

基本信息

  • 批准号:
    1919211
  • 负责人:
  • 金额:
    $ 44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2019-10-31
  • 项目状态:
    已结题

项目摘要

Achieving both high productivity and high performance on scalable parallel and heterogeneous computer systems is a challenging goal for application developers. Parallel programming with Message Passing Interface (MPI) is currently the most widely used and effective means of developing scalable parallel applications; however the productivity of application developers is lower than with programming models that offer a global shared view of data structures. In comparison, achieving high performance and scalability with global-address-space programming models is challenging. This project focuses on the development of a data-centric compiler/runtime framework, "Parallel Algorithms by Blocks" (PAbB), aimed at offering users the combined positive attributes of multiple parallel programming models without the disadvantages. The main novelty of this project is that it uses a combination of user insights, new compiler optimizations, and advanced runtime support to achieve both productivity and performance for an important class of computations that operate on matrices, tensors, and graphs. The main broader impact of the work is that it can significantly lower the barrier to entry for scientists from various domains who wish to develop new high-performance applications on large scale parallel systems, but presently find it too difficult with currently available parallel programming models. This project brings together a team of investigators, with expertise across the software stack, to develop compiler tools and runtime systems for PAbB and demonstrate its use across a number of applications from computational science and data science. The PAbB model is intended to work in concert with MPI; that is, PAbB programs can execute in any standard MPI environment, interoperating with other native MPI code. The key idea behind the proposed approach is to offer the user a global-address view of the targeted data structures, requiring only (optionally in some cases) that they specify how data should be partitioned, but have the compiler/runtime handle the tedious aspects of the global-to-local re-indexing and inter-node data movement. In addition to the productivity benefit, a second significant benefit is in enabling system support for dynamic load balancing. The approach is being designed and demonstrated in the context of applications operating on dense and sparse matrices and tensors, and graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在可扩展的平行和异质计算机系统上,实现高生产率和高性能是应用程序开发人员的挑战性目标。并行编程与消息传递接口(MPI)是当前是开发可扩展并行应用程序的最广泛使用和有效手段。但是,应用程序开发人员的生产率低于提供全球数据结构共享视图的编程模型。相比之下,通过全球地址空间编程模型实现高性能和可伸缩性是一项挑战。该项目的重点是开发以数据为中心的编译器/运行时框架“ By Blocks By Blocks”(PABB)的开发,旨在为用户提供多个没有缺点的多个并行编程模型的正面属性。该项目的主要新颖性是,它结合了用户洞察力,新编译器优化和高级运行时支持,以实现在矩阵,张量和图形上运行的重要一类计算类别的生产力和性能。这项工作的主要影响是,它可以显着降低来自希望在大型平行系统上开发新的高性能应用程序的科学家的进入的障碍,但目前发现当前可用的并行编程模型这太困难了。该项目汇集了一组研究人员,在软件堆栈中具有专业知识,以开发用于PABB的编译器工具和运行时系统,并在计算科学和数据科学的许多应用程序中证明了其在许多应用程序中的使用。 PABB模型旨在与MPI协同合作;也就是说,PABB程序可以在任何标准的MPI环境中执行,并与其他本机MPI代码互操作。拟议方法背后的关键思想是向用户提供目标数据结构的全球地址视图,仅需要(在某些情况下选择)它们指定了应如何分区数据,但具有编译器/运行时处理全球到局部到局部重新索引和节点数据移动的乏味方面。除了生产力益处外,第二个重要的好处是为动态负载平衡提供系统支持。该方法是在以密集和稀疏的矩阵和张量进行的应用程序的背景下进行设计和证明的。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ponnuswamy Sadayappan其他文献

Ponnuswamy Sadayappan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ponnuswamy Sadayappan', 18)}}的其他基金

Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
  • 批准号:
    2217154
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
  • 批准号:
    2119677
  • 财政年份:
    2021
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
OAC: Small: Data Locality Optimization for Sparse Matrix/Tensor Computations
OAC:小型:稀疏矩阵/张量计算的数据局部性优化
  • 批准号:
    2009007
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
  • 批准号:
    2028942
  • 财政年份:
    2020
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
  • 批准号:
    2018016
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
  • 批准号:
    1940789
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
  • 批准号:
    1946752
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
  • 批准号:
    1816793
  • 财政年份:
    2018
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
  • 批准号:
    1629548
  • 财政年份:
    2016
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
EAGER: Towards Automated Characterization of the Data-Movement Complexity of Large Scale Analytics Applications
EAGER:实现大规模分析应用程序数据移动复杂性的自动表征
  • 批准号:
    1645599
  • 财政年份:
    2016
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
  • 批准号:
    2408925
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    2412182
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
  • 批准号:
    2318628
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
  • 批准号:
    2202859
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了