XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
基本信息
- 批准号:1629548
- 负责人:
- 金额:$ 54.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many real world problems can be effectively modeled as complex relationship networks or graphs where nodes represent entities of interest and edges mimic the interactions or relationships among them. The number of such problems and the diversity of domains from which they arise is growing. However developing high-performance applications to extract useful information from such datasets is very challenging. Graphical processing units are very attractive for such applications because they offer higher computational performance and energy efficiency than standard multi-core processors. However, the development of high-performance applications for them is currently much more challenging than parallel program development for standard multi-core processors. Effective application development to use graphical processing units generally requires that developers possess considerable expertise on their architectural characteristics and use specialized programming models and performance optimization techniques. Thus, simultaneously achieving high performance and high user productivity for data analytics applications for such devices is a daunting challenge.This project proposes a scalable high-level software framework to enable the productive development of high-performance applications for graphical processing units. It features two distinct abstractions to address the performance and productivity challenges in developing graph/data analytics applications: 1) a frontier-centric abstraction that is based on a common iterative characteristic of many of these applications, with a dynamically moving active frontier of vertices (or edges) where computation is centered, and 2) an abstraction based on sparse linear algebra primitives, exploiting the dual relationship between sparse matrices and graphs. A benchmark suite of graph analytics applications will be developed and evaluated using both abstractions, enabling insights into the effectiveness of these alternate high-level abstractions for a range of analytics applications. The benchmark suite and the software framework will be publicly released.
许多现实世界问题可以有效地建模为复杂的关系网络或图表,其中节点代表了感兴趣的实体,并模仿了它们之间的相互作用或关系。这些问题的数量以及它们出现的域的多样性正在增长。但是,开发高性能应用程序以从此类数据集中提取有用的信息非常具有挑战性。 图形处理单元对此类应用非常有吸引力,因为它们提供的计算性能和能源效率高于标准多核处理器。但是,目前,为他们的高性能应用程序开发与标准多核处理器的并行程序开发更具挑战性。使用图形处理单元的有效应用程序开发通常要求开发人员在其建筑特征上具有丰富的专业知识,并使用专门的编程模型和性能优化技术。因此,在此类设备的数据分析应用程序中同时实现高性能和高用户生产力是一个令人生畏的挑战。本项目提出了一个可扩展的高级软件框架,以使图形处理单元的高性能应用程序的生产性开发。 It features two distinct abstractions to address the performance and productivity challenges in developing graph/data analytics applications: 1) a frontier-centric abstraction that is based on a common iterative characteristic of many of these applications, with a dynamically moving active frontier of vertices (or edges) where computation is centered, and 2) an abstraction based on sparse linear algebra primitives, exploiting the dual relationship between sparse matrices and graphs.将使用这两个抽象来开发和评估图形分析应用程序的基准套件,从而对这些替代高级抽象在一系列分析应用程序中的有效性进行见解。基准套件和软件框架将公开发布。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ponnuswamy Sadayappan其他文献
Ponnuswamy Sadayappan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ponnuswamy Sadayappan', 18)}}的其他基金
Collaborative Research: PPoSS: Large: A Comprehensive Framework for Efficient, Scalable, and Performance-Portable Tensor Applications
合作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用的综合框架
- 批准号:
2217154 - 财政年份:2022
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Model-Driven Compiler Optimization and Algorithm-Architecture Co-Design for Scalable Machine Learning
协作研究:PPoSS:规划:用于可扩展机器学习的模型驱动编译器优化和算法架构协同设计
- 批准号:
2119677 - 财政年份:2021
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
OAC: Small: Data Locality Optimization for Sparse Matrix/Tensor Computations
OAC:小型:稀疏矩阵/张量计算的数据局部性优化
- 批准号:
2009007 - 财政年份:2020
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: A Cross-Layer Observable Approach to Extreme Scale Machine Learning and Analytics
协作研究:PPoSS:规划:超大规模机器学习和分析的跨层可观察方法
- 批准号:
2028942 - 财政年份:2020
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
2018016 - 财政年份:2019
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
CDS&E: Compiler/Runtime Support for Developing Scalable Parallel Multi-Scale Multi-Physics
CDS
- 批准号:
1940789 - 财政年份:2019
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1946752 - 财政年份:2019
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Parallel Algorithm by Blocks - A Data-centric Compiler/runtime System for Productive Programming of Scalable Parallel Systems
SPX:协作研究:块并行算法 - 用于可扩展并行系统的高效编程的以数据为中心的编译器/运行时系统
- 批准号:
1919211 - 财政年份:2019
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
SHF: Small: Tools for Productive High-performance Computing with GPUs
SHF:小型:使用 GPU 进行高效高性能计算的工具
- 批准号:
1816793 - 财政年份:2018
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
EAGER: Towards Automated Characterization of the Data-Movement Complexity of Large Scale Analytics Applications
EAGER:实现大规模分析应用程序数据移动复杂性的自动表征
- 批准号:
1645599 - 财政年份:2016
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
相似国自然基金
近代东北南满铁路沿线工业城市的建设和技术传播
- 批准号:52378030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
- 批准号:82374014
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:82204619
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
- 批准号:82260981
- 批准年份:2022
- 资助金额:33.00 万元
- 项目类别:地区科学基金项目
相似海外基金
XPS: FULL: Collaborative Research: Enabling Scalable Cloud And Edge-device Integration Using Cross-layer Parallelism
XPS:完整:协作研究:使用跨层并行性实现可扩展的云和边缘设备集成
- 批准号:
1903880 - 财政年份:2018
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
- 批准号:
1818643 - 财政年份:2017
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Maximizing the Performance Potential and Reliability of Flash-based Solid State Devices for Future Storage Systems
XPS:完整:协作研究:最大限度地提高未来存储系统基于闪存的固态设备的性能潜力和可靠性
- 批准号:
1629291 - 财政年份:2016
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Rethinking Architecture Support for Memory Consistency
XPS:完整:协作研究:重新思考对内存一致性的架构支持
- 批准号:
1629126 - 财政年份:2016
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
XPS: FULL: Collaborative Research: Parallel and Distributed Circuit Programming for Structured Prediction
XPS:完整:协作研究:用于结构化预测的并行和分布式电路编程
- 批准号:
1629459 - 财政年份:2016
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant