Themes in Holomorphic Low-Dimensional Dynamics
全纯低维动力学主题
基本信息
- 批准号:1901357
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Theory of Dynamical systems studies the long-term behavior of trajectories described by a certain iteration procedure, and the way this phase portrait depends on the parameters of the system. Very interesting fractal objects may appear as phase and parameter diagrams for such systems. The principal investigator focuses on complex low-dimensional dynamical systems described by simple quadratic equations in this project. Despite simplicity of the description, these systems are known to display complicated chaotic behavior serving as a good model for various phenomena that appear in celestial mechanics, fluid dynamics, biology, and other branches of natural science. The activity will result in deeper insights into small scale structure of dynamical systems, in training of highly qualified postdocs and graduate students who will apply their skills in academia and industry, in broader interactions between experts in various branches of real and complex dynamics, in publishing a book that would help a broad student and research community to acquire background in the area, in promotion of communication in the field by organizing conferences and scientific programs, giving mini-courses, and maintaining a dynamics web site: http//www.math.stonybrook/dynamics.In this research a broad research program on several intertwined geometric themes of complex low-dimensional dynamics is investigated. The principal investigator will make a gradual transition from the one-dimensional to the two-dimensional world. The principal investigator will pursue several one-dimensional projects unified by the idea of renormalization as a powerful tool of penetrating into small-scale structure of dynamical objects aimed towards complete their classification. They include the Pacman Renormalization Theory, scaling of Mandelbrot limbs, and a priori bounds for infinitely renormalizable quadratic polynomials. The principal investigator will keep exploring the structure of the group of quasisymmetris for various classes of Julia sets and develop a new theory: the dynamics generated by Schwarz reflections in quadrature domains. In two complex dimensions, the principal investigator plans to keep working on the dynamics of dissipative complex Henon maps. Specific themes will include exploring the problem of existence of wandering domains, search for new examples of hyperbolic Henon maps, and description of their structure. The principal investigator also plans to finish the first two volumes of a book "Conformal Geometry and Dynamics of Quadratic Polynomials".This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统理论研究由特定迭代过程描述的轨迹的长期行为,以及该相图取决于系统参数的方式。非常有趣的分形对象可能会以此类系统的相位图和参数图的形式出现。在该项目中,主要研究人员重点研究由简单二次方程描述的复杂低维动力系统。尽管描述很简单,但众所周知,这些系统表现出复杂的混沌行为,可以作为天体力学、流体动力学、生物学和自然科学其他分支中出现的各种现象的良好模型。该活动将导致对动力系统小规模结构的更深入了解,培训高素质的博士后和研究生,他们将在学术界和工业界应用他们的技能,真实和复杂动力学各个分支的专家之间更广泛的互动,出版这本书将帮助广大学生和研究团体获得该领域的背景,通过组织会议和科学计划、提供迷你课程和维护动态网站来促进该领域的交流:http//www.math .stonybrook/dynamics.在此研究针对复杂低维动力学的几个相互交织的几何主题进行了广泛的研究计划。首席研究员将逐渐从一维世界过渡到二维世界。 首席研究员将开展几个一维项目,这些项目通过重正化的思想统一起来,作为渗透到动态对象的小规模结构的强大工具,旨在完成其分类。它们包括 Pacman 重整化理论、Mandelbrot 肢体的缩放以及无限重整二次多项式的先验界限。 首席研究员将继续探索各类 Julia 集的拟对称群的结构,并发展一种新理论:正交域中施瓦茨反射产生的动力学。在两个复杂的维度中,首席研究员计划继续研究耗散复数 Henon 贴图的动力学。具体主题将包括探索徘徊域的存在问题、寻找双曲Henon图的新例子以及对其结构的描述。首席研究员还计划完成《共形几何和二次多项式动力学》一书的前两卷。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Schwarz reflections and anti-holomorphic correspondences.
施瓦茨反射和反全纯对应。
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:1.7
- 作者:Lee, Seung;Lyubich, Mikhail;Makarov, Nikolai G.;Mukherjee, Sabyasachi
- 通讯作者:Mukherjee, Sabyasachi
Lebesgue measure of Feigenbaum Julia sets.
费根鲍姆朱莉娅集的勒贝格测度。
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:4.9
- 作者:Avila, Arthur;Lyubich, Mikhail
- 通讯作者:Lyubich, Mikhail
Antiholomorphic correspondences and mating I: realization theorems
反全纯对应和配对 I:实现定理
- DOI:
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Lyubich, Mikhail;Mazor, Jacob;Mukherjee, Sabyasachi
- 通讯作者:Mukherjee, Sabyasachi
The Critical Locus and Rigidity of Foliations of Complex Henon Maps
复杂Henon图叶面的临界轨迹和刚度
- DOI:
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Lyubich, Mikhail;Robertson, John W.
- 通讯作者:Robertson, John W.
Self-similar groups and holomorphic dynamics: renormalization, integrability, and spectrum.
自相似群和全纯动力学:重整化、可积性和谱。
- DOI:
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Dang, Nyugen;Grigorchuk, R.;Lyubich, Mikhail
- 通讯作者:Lyubich, Mikhail
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Lyubich其他文献
MLC at Feigenbaum points
费根鲍姆点的 MLC
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dzmitry Dudko;Mikhail Lyubich - 通讯作者:
Mikhail Lyubich
A priori bounds for some infinitely renormalizable quadratics: III. Molecules
一些无限可重整二次方程的先验界限:III。
- DOI:
10.1201/b10617-8 - 发表时间:
2007-12-14 - 期刊:
- 影响因子:0
- 作者:
Jeremy Kahn;Mikhail Lyubich - 通讯作者:
Mikhail Lyubich
Mikhail Lyubich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Lyubich', 18)}}的其他基金
HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
- 批准号:
2247613 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
- 批准号:
1600519 - 财政年份:2016
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Complex and Real Low Dimensional Dynamics
复杂而真实的低维动力学
- 批准号:
1301602 - 财政年份:2013
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
- 批准号:
1101596 - 财政年份:2011
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Geometric Aspects of Low Dimensional Dynamics
低维动力学的几何方面
- 批准号:
1007266 - 财政年份:2010
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Program in Holomorphic Dynamics, Laminations and Hyperbolic Geometry
全纯动力学、叠片和双曲几何课程
- 批准号:
0555429 - 财政年份:2006
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Geometric Structures in Holomorphic Dynamics and Teichmuller Theory
全纯动力学中的几何结构和 Teichmuller 理论
- 批准号:
0505652 - 财政年份:2005
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
International Conference in Geometry and Dynamical Systems, January 2003 - Cuernavaca, Mexico
几何和动力系统国际会议,2003 年 1 月 - 墨西哥库埃纳瓦卡
- 批准号:
0224996 - 财政年份:2002
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
相似国自然基金
复Grassmannian流形中全纯常曲率二维球面及Willmore子流形的构造
- 批准号:12301065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Siegel上半空间上全纯函数空间的若干研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全纯运动以及复平面上带分形边界的Dirichlet问题
- 批准号:12201206
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纯电动汽车电驱总成非稳态电磁噪声快速预测及全工况协调抑制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多复变函数论中基于不变量的全纯对象的构造
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
有限無限次元における有界対称領域上の正則写像に関する研究
有限无限维有界对称域全纯映射研究
- 批准号:
23K03136 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
- 批准号:
2247613 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
CAREER: Symplectic and Holomorphic Convexity in 4-dimensions
职业:4 维辛凸性和全纯凸性
- 批准号:
2144363 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Research on holomorphic mappings of Riemann surfaces --- Geometry of spaces of continuations of Riemann surfaces and applications
黎曼曲面全纯映射研究——黎曼曲面延拓空间的几何及应用
- 批准号:
22K03356 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)