HOLOMORPHIC DYNAMICS AND RELATED THEMES
全态动力学及相关主题
基本信息
- 批准号:2247613
- 负责人:
- 金额:$ 36.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The theory of dynamical systems studies the long-term behavior of trajectories described by iteration procedures, and how such behavior depends on the parameters of the system. Intricate fractal objects (like Julia sets and the Mandelbrot set) may appear as phase and parameter diagrams for such systems. This project focuses on complex and real low-dimensional dynamical systems described by simple quadratic equations. Despite the simplicity of the model, such systems are known to display complicated chaotic behavior indicative of various phenomena appearing in celestial mechanics, fluid dynamics, statistical mechanics, biology, and other branches of natural science. The proposed activity will result in deeper insights into the small scale structure of dynamical systems, in the training of highly qualified postdoctoral fellows and graduate students, in broader interactions between senior and junior experts in various branches of real and complex dynamics, and in the preparation of a book to assist the research community in acquiring background in the area. In addition, the Principal Investigator will facilitate communication within the field through the organization of international conferences and scientific programs and by maintaining a dynamics-related web site.The project addresses several geometric themes within complex low-dimensional dynamics, making a gradual transition from the one-dimensional to the two-dimensional world. In connection with dynamics in one dimension, renormalization will be investigated as a unifying and powerful tool for elucidating the small-scale structure of dynamical objects. Specific topics under consideration include a semi-local theory of neutral maps and a priori bounds for infinitely renormalizable quadratic polynomials with applications to the problem of local connectivity of the Mandelbrot set. Other topics of study include the dynamics generated by Schwarz reflections in quadrature domains and the dynamics of dissipative complex Henon maps. In connection with the latter, specific themes include the construction of two-dimensional examples of real and complex wild attractors and the development of a general theory of unimodal Henon maps. The project will also explore applications of higher dimensional holomorphic dynamics to the spectral theory of self-similar groups. Finally, the principal investigator will continue to work on a multi-volume book on the conformal geometry and dynamics of quadratic polynomials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力系统理论研究迭代过程描述的轨迹的长期行为,以及这种行为如何取决于系统的参数。复杂的分形对象(如 Julia 集和 Mandelbrot 集)可能会显示为此类系统的相位图和参数图。该项目重点研究由简单二次方程描述的复杂且真实的低维动力系统。尽管模型很简单,但众所周知,此类系统会表现出复杂的混沌行为,表明天体力学、流体动力学、统计力学、生物学和自然科学的其他分支中出现的各种现象。拟议的活动将更深入地了解动力系统的小规模结构,培养高素质的博士后研究员和研究生,在真实和复杂动力学的各个分支的高级和初级专家之间进行更广泛的互动,并在准备过程中帮助研究界获取该领域背景的一本书。此外,首席研究员将通过组织国际会议和科学计划以及维护与动力学相关的网站来促进该领域内的交流。该项目解决了复杂的低维动力学中的几个几何主题,逐步从一维世界到二维世界。与一维动力学相关,重整化将被研究作为阐明动态对象的小尺度结构的统一且强大的工具。正在考虑的具体主题包括中性映射的半局部理论和无限可重整二次多项式的先验界限以及曼德尔布罗特集局部连通性问题的应用。其他研究主题包括正交域中施瓦茨反射产生的动力学和耗散复数 Henon 映射的动力学。与后者相关的具体主题包括真实和复杂的野生吸引子的二维示例的构建以及单峰Henon图的一般理论的发展。该项目还将探索高维全纯动力学在自相似群谱理论中的应用。最后,首席研究员将继续撰写一本关于共形几何和二次多项式动力学的多卷书。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Lyubich其他文献
MLC at Feigenbaum points
费根鲍姆点的 MLC
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dzmitry Dudko;Mikhail Lyubich - 通讯作者:
Mikhail Lyubich
A priori bounds for some infinitely renormalizable quadratics: III. Molecules
一些无限可重整二次方程的先验界限:III。
- DOI:
10.1201/b10617-8 - 发表时间:
2007-12-14 - 期刊:
- 影响因子:0
- 作者:
Jeremy Kahn;Mikhail Lyubich - 通讯作者:
Mikhail Lyubich
Mikhail Lyubich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Lyubich', 18)}}的其他基金
Themes in Holomorphic Low-Dimensional Dynamics
全纯低维动力学主题
- 批准号:
1901357 - 财政年份:2019
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Analytic Low Dimensional Dynamics: From Dimension One to Two
解析低维动力学:从一维到二维
- 批准号:
1600519 - 财政年份:2016
- 资助金额:
$ 36.94万 - 项目类别:
Continuing Grant
Complex and Real Low Dimensional Dynamics
复杂而真实的低维动力学
- 批准号:
1301602 - 财政年份:2013
- 资助金额:
$ 36.94万 - 项目类别:
Continuing Grant
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
- 批准号:
1101596 - 财政年份:2011
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Geometric Aspects of Low Dimensional Dynamics
低维动力学的几何方面
- 批准号:
1007266 - 财政年份:2010
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Program in Holomorphic Dynamics, Laminations and Hyperbolic Geometry
全纯动力学、叠片和双曲几何课程
- 批准号:
0555429 - 财政年份:2006
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
Geometric Structures in Holomorphic Dynamics and Teichmuller Theory
全纯动力学中的几何结构和 Teichmuller 理论
- 批准号:
0505652 - 财政年份:2005
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
International Conference in Geometry and Dynamical Systems, January 2003 - Cuernavaca, Mexico
几何和动力系统国际会议,2003 年 1 月 - 墨西哥库埃纳瓦卡
- 批准号:
0224996 - 财政年份:2002
- 资助金额:
$ 36.94万 - 项目类别:
Standard Grant
相似国自然基金
GPR43/YAP/Drp1介导线粒体裂变抑制反应在丁酸钠促进ISMC代偿机制研究
- 批准号:81900465
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
与大脑功能与精神障碍有关的多层次多尺度模型的建立与动力学研究
- 批准号:11872084
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:面上项目
有关新型磁随机存储器的新材料及新器件的研究
- 批准号:61674079
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
有关强作用物质性质和结构的研究
- 批准号:11535005
- 批准年份:2015
- 资助金额:280.0 万元
- 项目类别:重点项目
强相互作用相图及有关CEP的研究
- 批准号:11275097
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
The short and long-term dynamics of opioid/stimulant use: Mixed methods to informoverdose prevention and treatment related to polysubstance use
阿片类药物/兴奋剂使用的短期和长期动态:与多物质使用相关的过量预防和治疗的混合方法
- 批准号:
10841942 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
- 批准号:
10638631 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
Investigating the role of frailty on outcomes in acutely ill patients with cirrhosis undergoing liver transplantation in the acute care setting
调查虚弱对在急症护理环境中接受肝移植的急性肝硬化患者的结局的作用
- 批准号:
10658726 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别:
The real-time dynamics of language processing across the lifespan
整个生命周期中语言处理的实时动态
- 批准号:
10741958 - 财政年份:2023
- 资助金额:
$ 36.94万 - 项目类别: