Time-Domain Atomistic Theory and Simulation of Excitation Dynamics on the Nanoscale

时域原子理论与纳米尺度激发动力学模拟

基本信息

  • 批准号:
    1900510
  • 负责人:
  • 金额:
    $ 51.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Oleg V. Prezhdo of the University of Southern California is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop computational approaches to study nanoscale materials. The award is cofunded by the Condensed Matter and Materials Theory program in the Division of Materials Research. Studying matter at the nanoscale allows scientists and engineers to develop smaller and faster electronic and electro-optic devices. These devices have many technological benefits. For example, they can improve the efficiency and lower the cost of solar cells. Many new technologies, such as those relevant to quantum information science also emerge from nanoscale research. Bridging the gap between molecular and bulk scales, nanoscale materials exhibit novel phenomena. An atom-level description and fine time-resolution are needed to understand these phenomena. To gain this detailed understanding, Professor Prezhdo and his research group develop novel theoretical methods and use them to study ultrafast dynamics in nanomaterials. This theoretical research is performed in close collaboration with experimentalists. The current focus of the Prezhdo group is on hybrid organic/inorganic perovskites, which show record solar cell efficiencies, as well as on two-dimensional materials, such as metal dichalcogenides and black phosphorus, which can lead to the development of devices that are just a few atoms in thickness. Professor Prezhdo is engaged at curriculum development aimed at increasing student involvement in energy sciences.These studies are rooted in the recent advances in nonadiabatic (NA) and semi-classical molecular dynamics (MD), and their implementation within time-domain density functional theory (TDDFT). The focus is on the investigation of the fundamental questions posed in the recent time resolved experiments performed on nanoscale materials. Specific attention is given to the development and testing of new simulation approaches and algorithms for NAMD with focus on rigor, accuracy, efficiency and applicability to large systems, which undergo practically important non-equilibrium processes involving excited electronic states and ultrafast timescales. The implementation and testing of the NAMD approaches within TDDFT with the goal of extending the applicability of NAMD to new problems and larger systems is also a goal of this research. The larger systems have electronic structure can be described by ab initio and tight binding DFT, including a new family of NAMD techniques (Liouville space NAMD) and types of processes (many-particle and spin-orbit interactions). Finally, the study of the excitation dynamics in two-dimensional materials and halide perovskites, which are under intense experimental investigation are investigated. These materials carry great promise for photovoltaic, photocatalytic, electronic, spintronic, plasmonic, valleytronic and related technologies, underlying future societal advances in energy harvesting and information processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
南加州大学的 Oleg V. Prezhdo 获得了化学系化学理论、模型和计算方法项目的资助,以开发研究纳米级材料的计算方法。 该奖项由材料研究部的凝聚态和材料理论项目共同资助。 在纳米尺度上研究物质使科学家和工程师能够开发出更小、更快的电子和电光设备。 这些设备具有许多技术优势。 例如,它们可以提高太阳能电池的效率并降低成本。 许多新技术,例如与量子信息科学相关的技术,也源于纳米级研究。 纳米级材料弥合了分子尺度和体尺度之间的差距,表现出新颖的现象。 理解这些现象需要原子级的描述和精细的时间分辨率。 为了获得这种详细的了解,Prezhdo 教授和他的研究小组开发了新颖的理论方法,并用它们来研究纳米材料的超快动力学。 这项理论研究是与实验学家密切合作进行的。 Prezhdo小组目前的重点是混合有机/无机钙钛矿,它显示出创纪录的太阳能电池效率,以及二维材料,例如金属二硫属化物和黑磷,这可以导致器件的开发几个原子的厚度。 Prezhdo 教授致力于课程开发,旨在提高学生对能源科学的参与。这些研究植根于非绝热 (NA) 和半经典分子动力学 (MD) 的最新进展,及其在时域密度泛函理论中的实现(时域离散傅里叶变换)。重点是研究最近在纳米级材料上进行的时间解决实验中提出的基本问题。特别关注 NAMD 新模拟方法和算法的开发和测试,重点关注大型系统的严谨性、准确性、效率和适用性,这些系统经历了涉及激发电子态和超快时间尺度的实际重要的非平衡过程。 在 TDDFT 中实现和测试 NAMD 方法,旨在将 NAMD 的适用性扩展到新问题和更大的系统,也是本研究的一个目标。 较大的系统的电子结构可以通过从头算和紧结合 DFT 来描述,包括一系列新的 NAMD 技术(刘维尔空间 NAMD)和过程类型(多粒子和自旋轨道相互作用)。最后,对二维材料和卤化物钙钛矿的激发动力学研究进行了深入的实验研究。 这些材料在光伏、光催化、电子、自旋电子、等离激元、谷电子和相关技术方面具有巨大的前景,是能量收集和信息处理方面未来社会进步的基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phonon-Mediated Interlayer Charge Separation and Recombination in a MoSe 2 /WSe 2 Heterostructure
MoSe 2 /WSe 2 异质结构中声子介导的层间电荷分离与复合
  • DOI:
    10.1021/acs.nanolett.0c04955
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Wang, Zilong;Altmann, Patrick;Gadermaier, Christoph;Yang, Yating;Li, Wei;Ghirardini, Lavinia;Trovatello, Chiara;Finazzi, Marco;Duò, Lamberto;Celebrano, Michele;et al
  • 通讯作者:
    et al
Combining Lindblad Master Equation and Surface Hopping to Evolve Distributions of Quantum Particles
结合 Lindblad 主方程和表面跳跃来演化量子粒子的分布
  • DOI:
    10.1021/acs.jpcb.0c03030
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yi;Nijjar, Parmeet;Zhou, Xin;Bondar, Denys I.;Prezhdo, Oleg V.
  • 通讯作者:
    Prezhdo, Oleg V.
Synergy between Ion Migration and Charge Carrier Recombination in Metal-Halide Perovskites
金属卤化物钙钛矿中离子迁移和载流子复合之间的协同作用
  • DOI:
    10.1021/jacs.9b12391
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Tong, Chuan;Li, Linqiu;Liu, Li;Prezhdo, Oleg V.
  • 通讯作者:
    Prezhdo, Oleg V.
Electron–Phonon Scattering Is Much Weaker in Carbon Nanotubes than in Graphene Nanoribbons
碳纳米管中的电子-声子散射比石墨烯纳米带中的电子-声子散射弱得多
  • DOI:
    10.1021/acs.jpclett.9b02874
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhou, Guoqing;Cen, Chao;Wang, Shuyi;Deng, Mingsen;Prezhdo, Oleg V.
  • 通讯作者:
    Prezhdo, Oleg V.
Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks
用人工神经网络插值非绝热分子动力学哈密顿量
  • DOI:
    10.1021/acs.jpclett.1c01645
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Bipeng;Chu, Weibin;Tkatchenko, Alexandre;Prezhdo, Oleg V.
  • 通讯作者:
    Prezhdo, Oleg V.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Prezhdo其他文献

Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites
极性甲基铵有机阳离子使卤化铅钙钛矿中的状态耦合失谐并延长热载流子寿命
  • DOI:
    10.1016/j.chempr.2022.07.005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    23.5
  • 作者:
    Cheng Wang;Weibin Chu;Feihong Ye;Zhenwei Ou;Zhe Li;Quanbing Guo;Zhuo Zheng;Zhiping Wang;Xiaoze Liu;Guojia Fang;Oleg Prezhdo;Ti Wang;Hongxing Xu
  • 通讯作者:
    Hongxing Xu
Unravelling the Effects of Grain Boundary and Chemical Doping on Electron−Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation
通过时域原子模拟揭示晶界和化学掺杂对 CH3NH3PbI3 钙钛矿中电子与空穴复合的影响
Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites
极性甲基铵有机阳离子使卤化铅钙钛矿中的状态耦合失谐并延长热载流子寿命
  • DOI:
    10.1016/j.chempr.2022.07.005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    23.5
  • 作者:
    Cheng Wang;Weibin Chu;Feihong Ye;Zhenwei Ou;Zhe Li;Quanbing Guo;Zhuo Zheng;Zhiping Wang;Xiaoze Liu;Guojia Fang;Oleg Prezhdo;Ti Wang;Hongxing Xu
  • 通讯作者:
    Hongxing Xu
Impact of composition engineering on charge carrier cooling in hybrid perovskites: computational insights
  • DOI:
    10.1039/d2tc01413k
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Dibyajyoti Ghosh;Carlos Mora Perez;Oleg Prezhdo;Wanyi Nie;Sergei Tretiak;Amanda J. Neukirch
  • 通讯作者:
    Amanda J. Neukirch

Oleg Prezhdo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Prezhdo', 18)}}的其他基金

Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324301
  • 财政年份:
    2023
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Standard Grant
Theory and Simulation of Non-adiabatic Excited State Dynamics in Nanoscale systems
纳米级系统非绝热激发态动力学的理论与模拟
  • 批准号:
    2154367
  • 财政年份:
    2022
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Standard Grant
Excitation Dynamics in Nanoscale Systems: Atomistic Time-Domain Theory and Simulation
纳米级系统中的激发动力学:原子时域理论与模拟
  • 批准号:
    1565704
  • 财政年份:
    2016
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
Time-Domain Atomistic Theory and Simulation of Excitation Dynamics on the Nanoscale
时域原子理论与纳米尺度激发动力学模拟
  • 批准号:
    1530854
  • 财政年份:
    2014
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
Time-Domain Atomistic Theory and Simulation of Excitation Dynamics on the Nanoscale
时域原子理论与纳米尺度激发动力学模拟
  • 批准号:
    1300118
  • 财政年份:
    2013
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
Time-domain ab initio studies of excitation dynamics in nanoscale materials
纳米材料激发动力学的时域从头开始研究
  • 批准号:
    0957280
  • 财政年份:
    2010
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
Time-domain ab initio studies of excitation dynamics in nanoscale materials
纳米材料激发动力学的时域从头开始研究
  • 批准号:
    1050405
  • 财政年份:
    2010
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
Nonadiabatic Molecular Dynamics for Studies of Nanoscale Materials
用于纳米材料研究的非绝热分子动力学
  • 批准号:
    0701517
  • 财政年份:
    2007
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Investigation of Non-adiabatic Chemical Dynamics in Solution
职业:溶液中非绝热化学动力学的理论研究
  • 批准号:
    0094012
  • 财政年份:
    2001
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向多个关键领域的质子交换膜燃料电池智能优化方法
  • 批准号:
    52367024
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
金属防腐蚀领域用异质结材料的设计及其关键制备技术
  • 批准号:
    22378124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于领域知识感知的溯因视觉问答技术研究
  • 批准号:
    62302243
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
领域性视角下南海旅游的形成机制及其地缘政治效应研究
  • 批准号:
    42301259
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y001117/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Research Grant
CRII: SHF: Systematic Construction of Teaching Language Progressions for Embedded Domain-Specific Languages
CRII:SHF:嵌入式领域特定语言教学语言进程的系统构建
  • 批准号:
    2348408
  • 财政年份:
    2024
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Standard Grant
HMA domain proteins as conserved targets of pathogens that exploit plasmodesmata
HMA 结构域蛋白作为利用胞间连丝的病原体的保守靶标
  • 批准号:
    BB/X016056/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Research Grant
BBSRC-NSF/BIO: An AI-based domain classification platform for 200 million 3D-models of proteins to reveal protein evolution
BBSRC-NSF/BIO:基于人工智能的域分类平台,可用于 2 亿个蛋白质 3D 模型,以揭示蛋白质进化
  • 批准号:
    BB/Y000455/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Research Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 51.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了