EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
基本信息
- 批准号:1915837
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Social media now play an important role in exposing people to information about a wide range of topics ranging from entertainment to hard news and political debate. What can be seen on these platforms is heavily influenced by algorithms that are designed to select the most engaging and relevant content for each user. By seeking to maximize engagement, these algorithms may inadvertently amplify factually dubious or poor quality information that reinforces users' existing beliefs. In doing so, these algorithms could reduce the diversity of information to which users are exposed. This project will develop new content recommendation algorithms that reduce this risk and improve the quality and diversity of information circulating on social media.This research will develop an understanding of how coupled cyber-human systems process information in the context of news consumption on social media. This context creates important information-processing vulnerabilities at the social, behavioral, cognitive, and algorithmic levels. Using data from a nationally representative sample of the U.S. population, investigators will measure the association between political attitudes, readership, engagement, and information quality. They will also test the effect of behavioral nudges designed to promote the consumption of diverse information in a browser extension/smartphone app. Finally, the researchers will develop a generic modeling framework to evaluate the effect of these recommendations on audience-slant diversification and to test their robustness against fraudulent (shilling) attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现在,社交媒体在使人们了解有关娱乐到艰难新闻和政治辩论的广泛主题的信息方面发挥了重要作用。在这些平台上可以看到的内容受到算法的严重影响,这些算法旨在为每个用户选择最吸引人和最相关的内容。通过寻求最大限度地提高参与度,这些算法可能会无意中放大实际上可疑或质量差的信息,从而增强了用户现有的信念。这样,这些算法可以减少用户暴露的信息的多样性。该项目将开发新的内容推荐算法,以降低这种风险并提高社交媒体传播的信息的质量和多样性。这项研究将对在社交媒体上新闻消费的背景下如何耦合网络人类系统处理信息。此上下文在社会,行为,认知和算法层面上创造了重要的信息处理漏洞。使用来自美国人口的全国代表性样本的数据,研究人员将衡量政治态度,读者,参与和信息质量之间的关联。他们还将测试旨在在浏览器扩展/智能手机应用程序中促进各种信息消费的行为推动力的效果。最后,研究人员将开发一个通用的建模框架,以评估这些建议对受众范围的多样化的影响,并测试其对欺诈性(先令)攻击的鲁棒性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的审查审查标准来通过评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Nyhan其他文献
How the relationship between education and antisemitism varies between countries
各国教育与反犹太主义之间的关系有何不同
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Brendan Nyhan;Shun Yamaya;Thomas Zeitzoff - 通讯作者:
Thomas Zeitzoff
The effects of Facebook and Instagram on the 2020 election: A deactivation experiment
Facebook 和 Instagram 对 2020 年大选的影响:一项停用实验
- DOI:
10.1073/pnas.2321584121 - 发表时间:
2024 - 期刊:
- 影响因子:11.1
- 作者:
Hunt Allcott;M. Gentzkow;Winter Mason;Arjun S. Wilkins;Pablo Barberá;Taylor Brown;Juan Carlos Cisneros;Adriana Crespo;Drew Dimmery;Deen Freelon;Sandra González;A. Guess;Young Mie Kim;David Lazer;Neil Malhotra;D. Moehler;Sameer Nair;Houda Nait El Barj;Brendan Nyhan;Ana Carolina Paixao de Queiroz;Jennifer Pan;Jaime Settle;Emily A. Thorson;Rebekah Tromble;Carlos Velasco Rivera;Benjamin Wittenbrink;Magdalena Wojcieszak;Saam Zahedian;Annie Franco;Chad Kiewiet de Jonge;N. Stroud;Joshua A. Tucker - 通讯作者:
Joshua A. Tucker
Decider in Chief? Why and How the Public Exaggerates the Power of the Presidency
总决策者?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.1
- 作者:
Scott Clifford;D. J. Flynn;Brendan Nyhan;K. Rhee - 通讯作者:
K. Rhee
Brendan Nyhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Nyhan', 18)}}的其他基金
RAPID: Naturalistic effects of landmark scientific reports on public beliefs and attitudes
RAPID:具有里程碑意义的科学报告对公众信念和态度的自然影响
- 批准号:
2319884 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: COVID-19 Information Exposure and Messaging Effects
RAPID:COVID-19 信息暴露和消息传递效果
- 批准号:
2028485 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1949077 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
RAPID: The Prevalence and Causes of Conspiracy Beliefs about Disease Outbreaks
RAPID:关于疾病爆发的阴谋论的普遍性和原因
- 批准号:
1659128 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
- 批准号:
2128642 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: A Case- and Play-Based Learning Module for Cybersecurity and Artificial Intelligence Education for Early Teen Learners
EAGER:SaTC-EDU:针对早期青少年学习者的网络安全和人工智能教育的基于案例和游戏的学习模块
- 批准号:
2113803 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
- 批准号:
2039354 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Designing Trustworthy and Transparent Information Platforms
EAGER:SaTC:早期跨学科合作:设计值得信赖且透明的信息平台
- 批准号:
1915755 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
EAGER: SaTC: Early-Stage Interdisciplinary Collaboration: Collaborative: Advances in Socio-Algorithmic Information Diversity
EAGER:SaTC:早期跨学科合作:协作:社会算法信息多样性的进展
- 批准号:
1915833 - 财政年份:2019
- 资助金额:
$ 15万 - 项目类别:
Standard Grant