EAGER: SaTC-EDU: Instilling a Mindset of Adversarial Thinking into Computer Science Courses Early and Often
EAGER:SaTC-EDU:尽早且经常地将对抗性思维方式灌输到计算机科学课程中
基本信息
- 批准号:2039354
- 负责人:
- 金额:$ 29.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Security and design flaws in artificial intelligence (AI) algorithms and computer systems can leave our personal information, including sensitive data such as medical records, dangerously exposed, or can give rise to biases that disadvantage or threaten parts of the population. The ability to successfully find these security and design flaws before they cause harm depends on qualified engineers, researchers, and policymakers who understand threats to computer systems and algorithms. However, threat-modeling is typically taught only in advanced Computer Science courses, which come late in the curriculum and which not all students elect to take. This project investigates whether earlier and continued exposure to material on threat modeling and a mindset called "adversarial thinking" improves students' ability to recognize and address challenges in privacy, cybersecurity, and new AI technologies. Adversarial thinking refers to adopting the perspective of an adversary who seeks to exploit weaknesses in a system, algorithm, or model. The resulting course materials and findings will be disseminated, and the findings are expected to motivate changes in the approach to computer science curricula.The project proposes to develop material on adversarial thinking and integrate it into courses at the introductory, intermediate, and advanced level of Brown University’s computer science curriculum. The project team will measure students' performance and progression within each course as well as across courses. The data collected will help answer the project’s central research question: do students who encounter adversarial thinking early in and repeatedly throughout their computer science education show improved ability to recognize and address threats and flaws in computer systems security and AI models? The project will impact academic computer science education through pedagogical methods, skills, and recommendations for curricular structures that help prepare students for the complexities, risks, and opportunities of new technologies.This project is supported by a special initiative of the Secure and Trustworthy Cyberspace (SaTC) program to foster new, previously unexplored, collaborations between the fields of cybersecurity, artificial intelligence, and education. The SaTC program aligns with the Federal Cybersecurity Research and Development Strategic Plan and the National Privacy Research Strategy to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)算法和计算机系统中的安全性和设计缺陷可以留下我们的个人信息,包括敏感数据,例如医疗记录,危险暴露,或者会引起灾难或威胁人口的偏见。在造成伤害之前,成功找到这些安全性和设计缺陷的能力取决于合格的工程师,研究人员和政策制定者,他们了解对计算机系统和算法的威胁。但是,通常仅在高级计算机科学课程中进行威胁模型,该课程在课程中很晚,并非所有学生都选择参加。该项目调查了较早和继续接触威胁建模的材料,而一种称为“对抗性思维”的心态提高了学生识别和应对隐私,网络安全和新的AI技术方面的挑战的能力。对手思维是指试图探索系统,算法或模型中的弱点的对手的观点。由此产生的课程材料和发现将被传播,并且发现这些发现将激发计算机科学课程方法的变化。项目的建议是开发对抗性思维的材料,并将其纳入布朗大学计算机科学课程的引言,中级和高级水平的课程。项目团队将衡量学生在每个课程中以及整个课程中的表现和进步。收集到的数据将有助于回答该项目的中心研究问题:在其计算机科学教育中遇到对抗性思维的学生是否表明能力提高了识别和解决计算机系统安全和AI模型中威胁和缺陷的能力?该项目将通过教学方法,技能和建议来影响学术计算机科学教育,以帮助学生为新技术的复杂性,风险和机遇做好准备。该项目得到了由安全且值得信赖的网络空间(SATC)计划的特殊倡议,以促进新的,以前出乎意料的,以前出乎意料的,以前出乎意料的,cybersecerity of Cybersecurity of Cerbersecurity,人类的人为,人类的协作。 SATC计划与联邦网络安全研发战略计划以及国家隐私研究战略保持一致,以保护和维护网络系统的不断增长的社会和经济利益,同时确保安全和隐私。该奖项反映了NSF的法定任务,并被认为是通过使用基金会的知识分子和更广泛影响的评估来审查Criteria来通过评估来通过评估来支持的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Model for Weaving Responsible Computing Into Courses Across the CS Curriculum
将负责任计算融入计算机科学课程的新模式
- DOI:10.1145/3408877.3432456
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Cohen, Lena;Precel, Heila;Triedman, Harold;Fisler, Kathi
- 通讯作者:Fisler, Kathi
Early Post-Secondary Student Performance of Adversarial Thinking
早期专上学生对抗性思维的表现
- DOI:10.1145/3446871.3469743
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Young, Nick;Krishnamurthi, Shriram
- 通讯作者:Krishnamurthi, Shriram
Tuplex: Data Science in Python at Native Code Speed
- DOI:10.1145/3448016.3457244
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Leonhard F. Spiegelberg;Rahul Yesantharao;Malte Schwarzkopf;Tim Kraska
- 通讯作者:Leonhard F. Spiegelberg;Rahul Yesantharao;Malte Schwarzkopf;Tim Kraska
Hyperspecialized Compilation for Serverless Data Analytics
无服务器数据分析的超专业编译
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Spiegelberg, Leonhard;Kraska, Tim;Schwarzkopf, Malte
- 通讯作者:Schwarzkopf, Malte
Applying Cognitive Principles to Model-Finding Output: The Positive Value of Negative Information
- DOI:10.1145/3527323
- 发表时间:2022-04-01
- 期刊:
- 影响因子:1.8
- 作者:Dyer,Tristan;Nelson,Tim;Krishnamurthi,Shriram
- 通讯作者:Krishnamurthi,Shriram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Malte Schwarzkopf其他文献
Cluster Scheduling for Data Centers
- DOI:
10.1145/3155112.3173558 - 发表时间:
2017-10 - 期刊:
- 影响因子:0
- 作者:
Malte Schwarzkopf - 通讯作者:
Malte Schwarzkopf
Research Statement – Malte Schwarzkopf
研究报告——马尔特·施瓦茨科普夫
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Malte Schwarzkopf - 通讯作者:
Malte Schwarzkopf
Operating system support for warehouse-scale computing
- DOI:
10.17863/cam.26443 - 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Malte Schwarzkopf - 通讯作者:
Malte Schwarzkopf
DEMO: Integrating MPC in Big Data Workflows
演示:将 MPC 集成到大数据工作流程中
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nikolaj Volgushev;Malte Schwarzkopf;A. Lapets;Mayank Varia;Azer Bestavros - 通讯作者:
Azer Bestavros
Malte Schwarzkopf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Malte Schwarzkopf', 18)}}的其他基金
Education DCL: EAGER: Teaching Privacy via Stakeholder Modeling
教育 DCL:EAGER:通过利益相关者建模教授隐私
- 批准号:
2335625 - 财政年份:2024
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Travel: Student Travel Support to SOSP 2023
旅行:SOSP 2023 学生旅行支持
- 批准号:
2342883 - 财政年份:2024
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
CAREER: Privacy-Compliant Web Services By Construction
职业:构建符合隐私的 Web 服务
- 批准号:
2045170 - 财政年份:2021
- 资助金额:
$ 29.79万 - 项目类别:
Continuing Grant
相似海外基金
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
- 批准号:
2335807 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SaTC-EDU: Secure and Privacy-Preserving Adaptive Artificial Intelligence Curriculum Development for Cybersecurity
合作研究:EAGER:SaTC-EDU:安全和隐私保护的网络安全自适应人工智能课程开发
- 批准号:
2335624 - 财政年份:2023
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039289 - 财政年份:2021
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Cybersecurity Education in the Age of Artificial Intelligence: A Novel Proactive and Collaborative Learning Paradigm
EAGER:SaTC-EDU:人工智能时代的网络安全教育:一种新颖的主动协作学习范式
- 批准号:
2114974 - 财政年份:2021
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Transformative Educational Approaches to Meld Artificial Intelligence and Cybersecurity Mindsets
EAGER:SaTC-EDU:融合人工智能和网络安全思维的变革性教育方法
- 批准号:
2115025 - 财政年份:2021
- 资助金额:
$ 29.79万 - 项目类别:
Standard Grant