Collaborative Research: Probing and Tailoring the Cathode-Electrolyte Interfacial Chemistries for Sodium Ion Batteries
合作研究:探索和定制钠离子电池的阴极-电解质界面化学
基本信息
- 批准号:1912876
- 负责人:
- 金额:$ 12.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a critical need for improved energy storage technologies for electric vehicles and large-scale integration of renewable electricity grid storage to improve domestic energy security. Currently, state-of-the-art energy storage technologies such as lithium ion batteries are insufficient in providing the performance requirements needed such as cost and energy density to enable broad use. Alternative battery chemistries could provide an avenue towards gains in energy density, durability, and cost for these applications. This fundamental research project addresses the use of sodium ion batteries as a potential low-cost and sustainable solution to large-scale electrochemical energy storage systems. However, the inferior cycle life of cathode electrode materials for this type of battery is a significant roadblock towards commercialization. This project addresses the issue with a collaborative experimental program that focuses on cathode electrode material synthesis methods and experimental characterization tools that can measure the processes occurring at the interface region of the cathode electrode and the battery electrolyte. Fundamental knowledge will result on these processes and will enable rational design strategies to increase the durability, energy density, and cycle life of this battery type. For broader impacts, the project?s partners will establish an energy storage research program at Jackson State University. An outreach program at each project institution will be enriched with educational modules and hands on activities for elementary school-age students with a learning disability in dyslexia via summer camps and learning centers and with enhanced parent participation.This project seeks to elucidate the interfacial degradation mechanisms of sodium cathode materials and to establish experimental approaches for tailoring and strengthening the cathode?electrolyte interface for sodium-ion batteries. The project will make use of advanced synchrotron X-ray and electron characterization tools to probe the battery chemistry in the temporally and spatially resolved environments. The project will improve the electrochemical kinetics of active particles and surface stability of cathode materials and thus their performance in sodium ion batteries. There is a need for a holistic study to understand the formation and evolution of the interfacial degradation as well as to quantitatively pinpoint its relationship with the surface oxygen reactivity and bulk redox chemistry. The doping approach will simultaneously mitigate the interfacial degradation and accelerate the bulk electrochemical kinetics. The research will accomplish the following objectives: (1) probing the multiscale interfacial chemical and structural transformations and investigating the relationship between sodium cathode surface chemistry, interfacial degradation, and electrochemical kinetics, (2) conducting spectroscopic and imaging measurements to spatially quantify the influence of the interfacial degradation on the bulk redox behavior of sodium cathode particles as a function of the state-of-charge, cycling history, and charging protocol, and (3) establishing approaches to tailor the cathode surface chemistry for mitigating the interfacial degradation and improving the sodium ion battery performance (e.g. energy density, cycle life, rate capability).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
至关重要的是,需要改善电动汽车的能源储能技术,并大规模整合可再生电网存储以改善国内能源安全。当前,诸如锂离子电池之类的最先进的储能技术不足以提供所需的性能要求,例如成本和能量密度以实现广泛使用。替代电池化学可以为这些应用的能量密度,耐用性和成本增长提供途径。该基本研究项目介绍了将钠离子电池用作大规模电化学储能系统的潜在低成本和可持续解决方案。但是,这种类型的电池的阴极电极材料的下循环寿命是商业化的重要障碍。该项目通过协作实验程序解决了问题,该程序侧重于阴极电极材料合成方法和实验表征工具,该工具可以测量在阴极电极和电池电解液的界面区域发生的过程。基本知识将导致这些过程,并使理性的设计策略能够提高电池类型的耐用性,能量密度和循环寿命。对于更广泛的影响,该项目的合作伙伴将在杰克逊州立大学建立一个储能研究计划。每个项目机构的宣传计划将充满教育模块和动手活动,以通过夏令营和学习中心在阅读障碍中学习障碍的小学生,并随着父母的参与而增强。该项目旨在阐明该材料的界面降级机制,以实现sodion conterfulte sode sode sode sod sod sod sod sod?该项目将利用高级同步器X射线和电子表征工具来探测时间和空间分辨环境中的电池化学。该项目将改善活性颗粒的电化学动力学和阴极材料的表面稳定性,从而在钠离子电池中的性能。需要一项整体研究来了解界面降解的形成和演变,并定量地指出其与表面氧反应性和大量氧化还原化学的关系。掺杂方法将同时减轻界面降解并加速散装的电化学动力学。这项研究将实现以下目标:(1)探测多尺度的互面化学和结构转化,并研究钠天主道表面化学,界面降解和电化学动力学之间的关系,(2)进行光谱和成像测量,以空间量化了对跨性别剂量的跨跨跨跨跨剂的影响,使其构成了促进式促进的跨度促进式促进的启发式促进的启动,使其跨越了促进型的互联物的影响。收费,骑自行车的历史和充电协议以及(3)建立方法来量身定制阴极表面化学,以减轻互化的际降解并提高钠离子电池的性能(例如能量密度,周期,循环寿命,费率能力,费率能力)。这一奖项反映了NSF的法定任务和范围的范围,这是通过评估的范围,并且在范围内得到了范围的范围。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MnO, Co and Ni Nanoparticle Synthesis by Oleylamie and Oleic Acid
油酰胺和油酸合成 MnO、Co 和 Ni 纳米粒子
- DOI:10.2174/2666001601666211110093947
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:He, Wencai;Qi, Yifang;Erugu, Uppalaiah;Moore, Jaiden;Zhu, Xianchun;Han, Fengxiang;Tang, Jinke;Dai, Qilin
- 通讯作者:Dai, Qilin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qilin Dai其他文献
Unraveling the Dual-Functional Mechanism of Light Absorption and Hole Transport of Cu2CdxZn1–xSnS4 for Achieving Efficient and Stable Perovskite Solar Cells
揭示Cu2CdxZn1-xSnS4的光吸收和空穴传输双功能机制,实现高效稳定的钙钛矿太阳能电池
- DOI:
10.1021/acsami.0c00607 - 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Yanjie Wu;Wenbo Bi;Zhichong Shi;Xinmeng Zhuang;Zonglong Song;Shuainan Liu;Cong Chen;Lin Xu;Qilin Dai;Hongwei Song - 通讯作者:
Hongwei Song
Synthesis of CaWO4-biochar Nanocomposites for Organic Dye Removal
用于去除有机染料的 CaWO4-生物炭纳米复合材料的合成
- DOI:
10.1016/j.materresbull.2018.10.031 - 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Ying Zhang;Ruimei Fan;Qinku Zhang;Ying Chen;Omaid Sharifi;Danuta Leszczynska;Rong Zhang;Qilin Dai - 通讯作者:
Qilin Dai
Efficient and stable perovskite solar cells through e-beam preparation of cerium doped TiO2 electron transport layer, ultraviolet conversion layer CsPbBr3 and the encapsulation layer Al2O3
通过电子束制备掺铈TiO2电子传输层、紫外转换层CsPbBr3和封装层Al2O3高效稳定的钙钛矿太阳能电池
- DOI:
10.1016/j.solener.2020.01.048 - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Junjie Jin;Hao Li;Wenbo Bi;Cong Chen;Boxue Zhang;Lin Xu;Biao Dong;Hongwei Song;Qilin Dai - 通讯作者:
Qilin Dai
Inorganic–organic hybrid semiconductor nanomaterials: (ZnSe)(N<sub>2</sub>H<sub>4</sub>)<sub><em>x</em></sub>(C<sub>5</sub>H<sub>5</sub>N)<sub><em>y</em></sub>
- DOI:
10.1016/j.materresbull.2008.11.023 - 发表时间:
2009-06-03 - 期刊:
- 影响因子:
- 作者:
Lina Liu;Hongwei Song;Libo Fan;Fang Wang;Ruifei Qin;Biao Dong;Haifeng Zhao;Xinguang Ren;Guohui Pan;Xue Bai;Qilin Dai - 通讯作者:
Qilin Dai
Luminescent material with functionalized graphitic carbon nitride as a photovoltaic booster in DSSCs: Enhanced charge separation and transfer
具有功能化石墨氮化碳的发光材料作为 DSSC 中的光伏增强器:增强电荷分离和转移
- DOI:
10.1557/jmr.2018.482 - 发表时间:
2019-02 - 期刊:
- 影响因子:2.7
- 作者:
Yanzhou Zhang;Kai Pan;Yang Qu;Guofeng Wang;Qilin Dai;Dingsheng Wang;Weiping Qin - 通讯作者:
Weiping Qin
Qilin Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qilin Dai', 18)}}的其他基金
RII Track-4:NSF: Understanding Perovskite Solar Cell Passivation at The Level of Organic Functional Groups through Ultrafast Spectroscopy
RII Track-4:NSF:通过超快光谱了解有机官能团水平的钙钛矿太阳能电池钝化
- 批准号:
2326788 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Excellence in Research: Spontaneous Nucleation Strategy for High-Quality Perovskite Films
卓越的研究:高质量钙钛矿薄膜的自发成核策略
- 批准号:
2242467 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Research Initiation Award: Novel Perovskite Solar Cells Based on Interface Manipulation
研究启动奖:基于界面操纵的新型钙钛矿太阳能电池
- 批准号:
1900047 - 财政年份:2019
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
相似国自然基金
SiC基石墨烯超表面紫外-太赫兹双波段探测器研究
- 批准号:62304187
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维杂化双钙钛矿分子铁电体的设计合成与自驱动偏振光电探测性能研究
- 批准号:22305209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
- 批准号:62303117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
直接中子探测半导体6LiInP2Se6的晶体生长、微观结构与中子探测器研究
- 批准号:52372011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
全宽带隙钙钛矿异质结阵列精确构筑及其紫外成像探测性能调控研究
- 批准号:52305623
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 12.48万 - 项目类别:
Standard Grant