US-China Collab: Harnessing Big Data to understand and predict diversity and transmission of human- and animal-infected avian influenza viruses in China
中美合作:利用大数据了解和预测中国人类和动物感染的禽流感病毒的多样性和传播
基本信息
- 批准号:1911955
- 负责人:
- 金额:$ 250万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the past two decades, highly pathogenic avian influenza viruses have infected poultry in many countries in the world, including China and the USA, which resulted in losses of billions of dollars in the poultry sector. According to the World Health Organization (WHO), a subset of these viruses has also caused symptoms or deaths to thousands of people since 2013. As these viruses persist, evolve, and spread, economic losses and health concerns to the agricultural, wildlife, and human communities are growing. Data and knowledge on the diversity and transmission of these viruses in epicenters such as China remain scattered, limited, and incomplete, which substantially hinders development of advanced capacity towards prediction and forecasting of diversity and transmission dynamics of avian influenza viruses. This project assembles an international and multi-disciplinary team from three US institutions (University of Oklahoma, U.S. Geological Survey Patuxent Wildlife Research Center, St. Jude Children's Research Hospital) and three institutions from China (China CDC, China Agricultural University, and Sun Yat-sen University), as well as the WHO Collaborating Center for Reference and Research on Influenza (China), and the WHO Collaborating Center for Studies on Ecology of Influenza in Animals (USA). The investigators will use both the One-Health (environmental-animal-human health) framework and Big Data approaches to advance research in ecology and evolution of influenza viruses and strengthen the capacity for international stakeholders to tackle critical issues in surveillance and pandemic preparedness. The project will train postdoctoral researchers and graduate students in interdisciplinary research skills for studying disease ecology and epidemiology. Through crowdsourcing, citizen science, and outreach activities this project will also educate non-academic stakeholders and the public on ecology and evolution of infectious diseases, which may lead to changes in human behaviors that could reduce the transmission and spillover of avian influenza viruses. The long-term goal of this collaborative work is to better understand, predict, and forecast the diversity and transmission of avian influenza viruses under four sets of specific aims and tasks. First, this project will use the One-Health framework to identify and document driving factors of avian influenza viruses at the human-animal-environment interface since the early 1980s in China, and Big Data approaches will be harnessed to improve disparate geospatial datasets of avian influenza viruses and discover driving factors of spill-over. These large datasets range from avian influenza virus genomic data to satellite-based landscape and wild bird migration data. Collation and synthesis of these data could substantially reduce the spatial and temporal uncertainties in our understanding and modeling of the transmission of avian influenza viruses. Second, this project will use phylogenetic and phylogeographic models to investigate the evolution of avian influenza viruses, which will help us better understand and predict their diversity. Third, this project will combine statistical and mathematical models to better understand and predict transmission dynamics of avian influenza viruses over time and space. Fourth, the research team will work with China CDC and other stakeholders to incorporate model results to support disease surveillance, control, and prevention. Data-models will be assimilated to assess the past and current avian influenza virus surveillance plans and guide the design of future surveillance plans. Simulations under various disease control scenarios will help assess outcomes and effectiveness of control measures on diversity and transmission of avian influenza viruses, which would assist decision makers and stakeholders in their efforts to tackle challenging issues in management of infectious diseases and public health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,包括中国和美国在内的世界许多国家中感染了高度致病的禽流感病毒,这导致家禽部门损失了数十亿美元。根据世界卫生组织(WHO)的说法,这些病毒的一部分也自2013年以来也引起了数千人的症状或死亡。由于这些病毒持续,发展和传播,因此对农业,野生动植物和人类社区的经济损失和健康问题正在增长。关于这些病毒在中国等震中的多样性和传播的数据和知识仍然分散,有限和不完整,这实质上阻碍了对鸟类流感病毒多样性和传播动态的预测和预测的高级能力的发展。 This project assembles an international and multi-disciplinary team from three US institutions (University of Oklahoma, U.S. Geological Survey Patuxent Wildlife Research Center, St. Jude Children's Research Hospital) and three institutions from China (China CDC, China Agricultural University, and Sun Yat-sen University), as well as the WHO Collaborating Center for Reference and Research on Influenza (China), and the WHO Collaborating Center for Studies on Ecology of Influenza in Animals (美国)。研究人员将同时使用一项健康(环境 - 人类健康)框架和大数据方法来推进对流感病毒的生态学研究和进化的研究,并增强国际利益相关者解决监视和大流行准备方面的关键问题的能力。该项目将培训博士后研究人员和研究生跨学科研究技能,以研究疾病生态学和流行病学。通过众包,公民科学和外展活动,该项目还将教育非学术利益相关者和公众关于传染病的生态和进化,这可能导致人类行为的变化,从而减少禽流感病毒的传播和溢出。这项协作工作的长期目标是更好地理解,预测和预测在四组特定目标和任务下的禽流感病毒的多样性和传播。首先,该项目将使用单身卫生框架来识别和记录自1980年代初在中国以来人体环境环境界面上禽流感病毒的驱动因素和驱动因素,并将利用大数据方法来改善溢油剂溢油剂和发现动力驱动因素的不同地理空间数据集。这些大数据集范围从禽流感病毒基因组数据到基于卫星的景观和野生鸟类迁移数据。这些数据的整理和合成可以大大减少我们对禽流感病毒传播的理解和建模时的空间和时间不确定性。其次,该项目将使用系统发育和植物地理学模型来研究禽流感病毒的演变,这将有助于我们更好地理解和预测其多样性。第三,该项目将结合统计和数学模型,以更好地理解和预测随时间和空间的禽流感病毒的传播动态。第四,研究小组将与中国疾病预防控制中心和其他利益相关者合作,将模型结果纳入支持疾病监测,控制和预防。数据模型将被吸收,以评估过去和当前的禽流感病毒监测计划,并指导未来监视计划的设计。在各种疾病控制场景下的模拟将有助于评估控制措施的结果和有效性对禽流感病毒的多样性和传播的有效性,这将有助于决策者和利益相关者努力解决在传染病管理和公共卫生管理方面的挑战性问题。这项奖项反映了NSF的法规和经过评估的构成范围的范围。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Post-2020 biodiversity framework challenged by cropland expansion in protected areas
- DOI:10.1038/s41893-023-01093-w
- 发表时间:2023-03
- 期刊:
- 影响因子:27.6
- 作者:Z. Meng;Jinwei Dong;Erle C. Ellis;G. Metternicht;Yuanwei Qin;Xiao-Peng Song;Sara Löfqvist;R. Garrett;Xiaopeng Jia;Xiangming Xiao
- 通讯作者:Z. Meng;Jinwei Dong;Erle C. Ellis;G. Metternicht;Yuanwei Qin;Xiao-Peng Song;Sara Löfqvist;R. Garrett;Xiaopeng Jia;Xiangming Xiao
A large but transient carbon sink from urbanization and rural depopulation in China
- DOI:10.1038/s41893-021-00843-y
- 发表时间:2022-02
- 期刊:
- 影响因子:27.6
- 作者:Xiaoxin Zhang;M. Brandt;Xiaowei Tong;P. Ciais;Y. Yue;Xiangming Xiao;Wenmin Zhang;Kelin Wang
- 通讯作者:Xiaoxin Zhang;M. Brandt;Xiaowei Tong;P. Ciais;Y. Yue;Xiangming Xiao;Wenmin Zhang;Kelin Wang
TROPOMI SIF reveals large uncertainty in estimating the end of plant growing season from vegetation indices data in the Tibetan Plateau
- DOI:10.1016/j.rse.2022.113209
- 发表时间:2022-10
- 期刊:
- 影响因子:13.5
- 作者:Jilin Yang;Xiangming Xiao;R. Doughty;Miaomiao Zhao;Yao Zhang;P. Köhler;Xiaocui Wu;C. Frankenberg-C.-Frankenb
- 通讯作者:Jilin Yang;Xiangming Xiao;R. Doughty;Miaomiao Zhao;Yao Zhang;P. Köhler;Xiaocui Wu;C. Frankenberg-C.-Frankenb
Mapping Eucalyptus plantation in Guangxi, China by using knowledge-based algorithms and PALSAR-2, Sentinel-2, and Landsat images in 2020
- DOI:10.1016/j.jag.2023.103348
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Chenchen Zhang;Xiangming Xiao;Liangcheng Zhao;Yuanwei Qin;R. Doughty;Xinxin Wang;Jinwei Dong;Xuebin Yang
- 通讯作者:Chenchen Zhang;Xiangming Xiao;Liangcheng Zhao;Yuanwei Qin;R. Doughty;Xinxin Wang;Jinwei Dong;Xuebin Yang
Rebound in China’s coastal wetlands following conservation and restoration
中国滨海湿地保护和恢复后的恢复
- DOI:10.1038/s41893-021-00793-5
- 发表时间:2021
- 期刊:
- 影响因子:27.6
- 作者:Xinxin Wang;Xiangming Xiao;Xiao Xu;Zhenhua Zou;Bangqian Chen;Yuanwei Qin;Xi Zhang;Jinwei Dong;Diyou Liu;Lianghao Pan;Bo Li
- 通讯作者:Bo Li
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangming Xiao其他文献
Spatial-temporal consistency between gross primary productivity and solar-induced chlorophyll fluorescence of vegetation in China during 2007-2014
2007-2014年中国植被总初级生产力与日照叶绿素荧光时空一致性
- DOI:
10.1016/j.scitotenv.2018.05.245 - 发表时间:
2018 - 期刊:
- 影响因子:9.8
- 作者:
Jun Ma;Xiangming Xiao;Yao Zhang;Russell Doughty;Bangqian Chen;Bin Zhao - 通讯作者:
Bin Zhao
Comparison of Gross Primary Productivity Derived from GIMMS NDVI3g, GIMMS, and MODIS in Southeast Asia
东南亚 GIMMS NDVI3g、GIMMS 和 MODIS 得出的总初级生产力比较
- DOI:
10.3390/rs6032108 - 发表时间:
2014-03 - 期刊:
- 影响因子:5
- 作者:
Hiroaki Kondo;Yunfen Liu;Takashi Hirano;Xiangming Xiao - 通讯作者:
Xiangming Xiao
Comparison of venetoclax and ivosidenib/enasidenib for unfit newly diagnosed patients with acute myeloid leukemia and IDH1/2 mutation: a network meta-analysis
Venetoclax 与 ivosidenib/enasidenib 用于不适宜初诊急性髓系白血病 IDH1/2 突变患者的比较:一项网络荟萃分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.8
- 作者:
Lida Wang;Jiwu Song;Xiangming Xiao;Dianfang Li;Tianmeng Liu;Xiaopo He - 通讯作者:
Xiaopo He
Contribution of urban ventilation to the thermal environment and urban energy demand: Different climate background perspectives
城市通风对热环境和城市能源需求的贡献:不同气候背景视角
- DOI:
10.1016/j.scitotenv.2021.148791 - 发表时间:
2021 - 期刊:
- 影响因子:9.8
- 作者:
Jun Yang;Yichen Wang;Bing Xue;Yunfei Li;Xiangming Xiao;Jianhong Xia;Baojie He - 通讯作者:
Baojie He
Effects of the 2022 extreme droughts on avian influenza transmission risk in Poyang Lake
2022年极端干旱对鄱阳湖禽流感传播风险的影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xinxin Wang;Xiangming Xiao;Chenchen Zhang;Jinwei Dong;Bo Li - 通讯作者:
Bo Li
Xiangming Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangming Xiao', 18)}}的其他基金
Conference: USA-UK-China-Israel Workshop on Frontiers in Ecology and Evolution of Infectious Diseases
会议:美国-英国-中国-以色列生态学和传染病进化前沿研讨会
- 批准号:
2406564 - 财政年份:2024
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
I-Corps: An integrated tool for crop ecosystem monitoring, analysis, and prediction
I-Corps:作物生态系统监测、分析和预测的综合工具
- 批准号:
2306392 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
PIPP Phase 1: International Center for Avian Influenza Pandemic Prediction and Prevention
PIPP 第一阶段:国际禽流感大流行预测和预防中心
- 批准号:
2200310 - 财政年份:2022
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
US-China Workshop on Frontiers in Ecology and Evolution of Infectious Diseases; January 10-12, 2018, Shenzhen, China
中美传染病生态学和进化前沿研讨会;
- 批准号:
1817884 - 财政年份:2017
- 资助金额:
$ 250万 - 项目类别:
Standard Grant
相似国自然基金
中美贸易摩擦对中国科技创新的影响研究:基于国际科技交流合作的视角
- 批准号:72303211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生态经济系统碳循环的中国跨域合作减排机制研究
- 批准号:42301351
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国国际发展合作在非洲的经济社会效益的研究
- 批准号:72303009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市文化融合的创新合作效应、机理与政策设计
- 批准号:72303235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
南南农业合作促进中国和世界粮食安全的机制与政策研究
- 批准号:72261147471
- 批准年份:2022
- 资助金额:200.00 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
文章表現力を育成し「主体的に書く」ための複合的な中国語作文教育モデルの構築
构建复合语文写作教育模式,培养写作表现力和“独立写作”
- 批准号:
23K00646 - 财政年份:2023
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
高精細X線CTスキャナ活用を中心とする古代中国の封泥の作成方法に関する総合的研究
全面研究中国古代污泥的制造方法,重点关注高清X射线CT扫描仪的使用
- 批准号:
21K00980 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
岩国市に伝存する和漢古典籍の分類総合目録作成に関する研究
岩国市保存的中日典籍综合分类目录编制研究
- 批准号:
21K00283 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Archaeological study on the northern nomadic elements absorbed in the Qin and Han dynasties
秦汉时期吸收的北方游牧元素的考古研究
- 批准号:
21H00602 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
魯迅作品日本語翻訳の総合的研究
鲁迅作品日译综合研究
- 批准号:
21K00322 - 财政年份:2021
- 资助金额:
$ 250万 - 项目类别:
Grant-in-Aid for Scientific Research (C)