RI: Small: Understanding Subtle Non-Social Facial Expressivity to Boost Learning and Computer Interaction
RI:小:理解微妙的非社交面部表情以促进学习和计算机交互
基本信息
- 批准号:1911197
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Facial expressions play a significant role in everyday communication among humans. Computer understanding of these complex and subtle expressions will lead to highly capable interactive cyber-human systems with proactive computers that make more appropriate responses to human interactions. This project brings together an interdisciplinary team of investigators to address key challenges associated with spontaneous microexpression recognition in non-social scenarios. The project concentrates on generating bio-feedback from humans while learning skills, such as online learning, and being recorded and analyzed in continuous color and depth video streams. It will develop computer algorithms for human-machine synergy and test how this information can provide for superior learning when training applications are augmented with expression-informed bio-feedback in near real-time. This represents a significant step forward in training machines to recognize and classify facial microexpressions and maximizing the synergy of cyber-human systems that will improve the quality of life experiences. It will provide a computing environment within the reach of common people in which the interests or even the health of people can be detected and predicted, with significant impacts on skill learning, education and information retrieval.The project develops an approach to the understanding of complex and subtle facial microexpressions and bio-feedback where the synergy between cyber and human systems can be fully exploited. It addresses key challenges associated with computational understanding and modeling of intelligence in challenging, realistic contexts. It uses assessment and intervention based on facial microexpressions to maximize synergy of cyber and human systems for skill learning. First, it considers deep learning and closed-loop video analysis for optimized skill learning in a reinforcement learning framework. Second, it develops novel representation of facial microexpressions from color and depth video streams and use them for person independent emotion recognition as well as person-specific emotions recognition when a learning task is adapted. Third, it exploits not only the color camera but also the integrated depth camera for precise measurements, which has not been used for microexpressions. The focus is to determine the extent to which real-time classification of microexpressions can provide for more appropriate interactivity that will facilitate human learning in real applications. The results will be broadly disseminated through a website that will have regular releases of databases and software tools by offering tutorials, workshops and demos at major professional meetings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
面部表情在人类之间的日常交流中起着重要作用。对这些复杂而微妙的表达式的计算机理解将导致具有积极主动的计算机的高功能交互式网络人类系统,从而对人类互动做出更适当的反应。该项目汇集了一个跨学科的研究人员团队,以应对与自发的微表达识别相关的关键挑战。该项目集中于在学习技能(例如在线学习)以及以连续的色彩和深度视频流进行录制和分析的同时,从人类那里产生生物反馈。它将开发用于人机协同作用的计算机算法,并测试当培训应用程序在近乎实时的表达信息中增强培训应用时如何提供出色的学习。这代表了训练机迈出的重要一步,以识别和对面部微表达进行分类,并最大程度地提高网络人类系统的协同作用,以改善生活质量的体验。它将在普通民族的范围内提供一个计算环境,在这种环境中,可以检测和预测人们的利益甚至人的健康,对技能学习,教育和信息检索产生重大影响。该项目开发了一种方法来理解对复杂和微妙的面部微表达以及对网络和人类系统之间的协同作用的复杂和生物反馈的方法。它解决了与挑战,现实的环境中智能的计算理解和建模有关的关键挑战。它使用基于面部微表达的评估和干预措施来最大程度地提高网络和人类系统的协同作用,以进行技能学习。首先,它考虑了深度学习和闭环视频分析,以在强化学习框架中优化技能学习。其次,它从颜色和深度视频流中开发了面部微表达的新颖表示,并将其用于人独立的情感识别,以及在适应学习任务时特定于人的情绪识别。第三,它不仅利用了彩色摄像头,还利用了集成的深度摄像头进行精确的测量,这尚未用于微表达。重点是确定微表达的实时分类可以为更合适的互动性提供多大分类,从而有助于人类在实际应用中学习。结果将通过一个网站大致传播,该网站将通过在主要专业会议上提供教程,讲习班和演示来定期发布数据库和软件工具。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Micro-Expression Classification based on Landmark Relations with Graph Attention Convolutional Network
基于图注意力卷积网络的地标关系微表情分类
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kumar, Ankith Jain;Bhanu, Bir
- 通讯作者:Bhanu, Bir
Towards Visually Explaining Variational Autoencoders
- DOI:10.1109/cvpr42600.2020.00867
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Wenqian Liu;Runze Li;Meng Zheng;S. Karanam;Ziyan Wu;B. Bhanu;R. Radke;O. Camps
- 通讯作者:Wenqian Liu;Runze Li;Meng Zheng;S. Karanam;Ziyan Wu;B. Bhanu;R. Radke;O. Camps
Depth Videos for the Classification of Micro-Expressions
- DOI:10.1109/icpr48806.2021.9412976
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:A. Kumar;B. Bhanu;Christopher Casey;S. Cheung;A. Seitz
- 通讯作者:A. Kumar;B. Bhanu;Christopher Casey;S. Cheung;A. Seitz
Three Stream Graph Attention Network using Dynamic Patch Selection for the classification of micro-expressions
- DOI:10.1109/cvprw56347.2022.00277
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ankith Jain Rakesh Kumar;B. Bhanu
- 通讯作者:Ankith Jain Rakesh Kumar;B. Bhanu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bir Bhanu其他文献
Learning small gallery size for prediction of recognition performance on large populations
- DOI:
10.1016/j.patcog.2013.05.024 - 发表时间:
2013-12-01 - 期刊:
- 影响因子:
- 作者:
Rong Wang;Bir Bhanu;Ninad S. Thakoor - 通讯作者:
Ninad S. Thakoor
Attention-based Anomaly Detection in Multi-view Surveillance Videos
多视角监控视频中基于注意力的异常检测
- DOI:
10.1016/j.knosys.2022.109348 - 发表时间:
2022-06 - 期刊:
- 影响因子:0
- 作者:
Qun Li;Rui Yang;Fu Xiao;Bir Bhanu;Feng Zhang - 通讯作者:
Feng Zhang
Learning reference-based representation for Image categorization
学习基于参考的图像分类表示
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Li Qun;Zhang Honggang;Guo Jun;Bir Bhanu - 通讯作者:
Bir Bhanu
Bir Bhanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bir Bhanu', 18)}}的其他基金
EAGER: Social Networks Based Concept Learning in Images
EAGER:基于社交网络的图像概念学习
- 批准号:
1552454 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CPS: Synergy: Distributed Sensing, Learning and Control in Dynamic Environments
CPS:协同:动态环境中的分布式传感、学习和控制
- 批准号:
1330110 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Distributed Camera Networks: Research Challenges and Future Directions.
分布式相机网络:研究挑战和未来方向。
- 批准号:
0910614 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Medium: Integrated Analysis and Synthesis for Data Mining in a Video Network
RI:媒介:视频网络中数据挖掘的集成分析与综合
- 批准号:
0905671 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RI: Small: Performance Prediction and Validation for Object Recognition
RI:小型:对象识别的性能预测和验证
- 批准号:
0915270 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Learning Concepts in Morphological Image Databases
学习形态图像数据库中的概念
- 批准号:
0641076 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
BioCOMP: Biologically Inspired Computational Model for Perception
BioCOMP:受生物启发的感知计算模型
- 批准号:
0727129 - 财政年份:2007
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRI: Outdoor Video Sensor Network Laboratory
CRI:室外视频传感器网络实验室
- 批准号:
0551741 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ITR/IM: Handling Uncertainty in Spatial Databases
ITR/IM:处理空间数据库中的不确定性
- 批准号:
0114036 - 财政年份:2001
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
小麦抗旱耐盐小分子多肽基因TaCLE3B的功能鉴定及分子机理解析
- 批准号:U22A20471
- 批准年份:2022
- 资助金额:252.00 万元
- 项目类别:联合基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
- 批准号:32160442
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
非小细胞肺癌干性抑癌基因的系统筛选及机理解析
- 批准号:81972778
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
海量数据小训练样本集环境下的高效图像理解
- 批准号:61572451
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
- 批准号:
2426592 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232300 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232299 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
- 批准号:
2310254 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant