FET: Small: Collaborative Research: Integrated Spintronic Synapses and Neurons for Neuromorphic Computing Circuits - I(SNC)^2
FET:小型:协作研究:用于神经形态计算电路的集成自旋电子突触和神经元 - I(SNC)^2
基本信息
- 批准号:1910800
- 负责人:
- 金额:$ 19.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are many pressing problems today where data-intensive tasks are needed to be accomplished in real time. This can range from sequencing DNA, to self-driving cars recognizing a person walking by, to predicting the trajectory of a flying object. In these examples, traditional computing faces a performance wall where the computing time and energy is severely limited by memory access. If computers could be built closer to the way the brain computes, where memory and computation are densely connected together like the neurons (and synapses) of the brain, these tasks could be performed with a million times less energy. This requires doing research on designing and building artificial neurons and synapses, and research on connecting them together into neuromorphic circuits. Due to the many different kinds of problems this new type of computing will address, research in this area will have impact not only in the semiconductor industry, but also far-reaching impact in medicine, defense, and new technologies. This project will educate and train multiple Ph.D.-level and undergraduate students in this interdisciplinary field, with skills highly sought after in academia, national labs, and industry. It will also have significance for broadening participation of women and under-represented minorities in computing: the researchers seek to educate and train women and Hispanic students from their state of Texas.Nanodevices made from magnetic materials (such as iron) have many properties that make them uniquely suitable as artificial neurons and synapses to enable such computing. Nevertheless, a number of technical problems remain in using magnetic devices for neuromorphic computing, which this project aims to address: there has been little experimental study of circuits that combine spintronic neurons and synapses, the devices and circuits designed so far do not capture all the desired biological behaviors, and there have been no circuits designed that operate without external silicon-based devices. This interdisciplinary collaborative effort between experiment and circuit design will address these challenges by building and studying circuits using three-terminal magnetic tunnel junction devices. The research will result in design and fabrication of new types of these magnetic devices that more accurately represent the brain's functions, and in measurements of the magnetic devices' behavior in circuits. The project has the potential to establish magnetic materials as a platform for neuromorphic computing, similar to how silicon is the platform material for traditional computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今有许多紧迫的问题需要实时完成数据密集型任务。其范围包括从 DNA 测序到自动驾驶汽车识别路过的人,再到预测飞行物体的轨迹。在这些示例中,传统计算面临性能墙,其中计算时间和能量受到内存访问的严重限制。如果计算机的构建方式更接近大脑的计算方式,即内存和计算像大脑的神经元(和突触)一样紧密连接在一起,那么执行这些任务所需的能量可以减少一百万倍。这需要研究设计和构建人工神经元和突触,以及研究将它们连接在一起形成神经形态电路。由于这种新型计算将解决许多不同类型的问题,该领域的研究不仅会对半导体行业产生影响,而且还会对医学、国防和新技术产生深远的影响。该项目将在这一跨学科领域教育和培训多名博士级和本科生,他们的技能在学术界、国家实验室和工业界备受追捧。这对于扩大女性和代表性不足的少数族裔在计算机领域的参与也具有重要意义:研究人员寻求教育和培训来自德克萨斯州的女性和西班牙裔学生。由磁性材料(例如铁)制成的纳米设备具有许多特性,使得它们非常适合作为人工神经元和突触来实现此类计算。然而,使用磁性设备进行神经拟态计算仍然存在许多技术问题,该项目旨在解决这些问题:对结合自旋电子神经元和突触的电路的实验研究很少,迄今为止设计的设备和电路并没有捕获所有的信息。期望的生物行为,并且还没有设计出无需外部硅基设备即可运行的电路。实验和电路设计之间的跨学科合作将通过使用三端子磁性隧道结器件构建和研究电路来解决这些挑战。该研究将设计和制造新型磁性设备,更准确地代表大脑的功能,并测量磁性设备在电路中的行为。该项目有潜力将磁性材料建立为神经形态计算的平台,类似于硅作为传统计算的平台材料。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的评估进行评估,认为值得支持。影响审查标准。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape-Based Magnetic Domain Wall Drift for an Artificial Spintronic Leaky Integrate-and-Fire Neuron
- DOI:10.1109/ted.2019.2938952
- 发表时间:2019-11-01
- 期刊:
- 影响因子:3.1
- 作者:Brigner, Wesley H.;Friedman, Joseph S.;Garcia-Sanchez, Felipe
- 通讯作者:Garcia-Sanchez, Felipe
Process Variation Model and Analysis for Domain Wall-Magnetic Tunnel Junction Logic
- DOI:10.1109/iscas45731.2020.9180675
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Xuan Hu;Alexander J. Edwards;T. Xiao;C. Bennett;J. Incorvia;M. Marinella;J. Friedman
- 通讯作者:Xuan Hu;Alexander J. Edwards;T. Xiao;C. Bennett;J. Incorvia;M. Marinella;J. Friedman
Roadmap for unconventional computing with nanotechnology
- DOI:10.1088/2399-1984/ad299a
- 发表时间:2024-03-01
- 期刊:
- 影响因子:2.1
- 作者:Finocchio,Giovanni;Incorvia,Jean Anne C.;Bandyopadhyay,Supriyo
- 通讯作者:Bandyopadhyay,Supriyo
Shape‐Dependent Multi‐Weight Magnetic Artificial Synapses for Neuromorphic Computing
- DOI:10.1002/aelm.202200563
- 发表时间:2022-12
- 期刊:
- 影响因子:6.2
- 作者:Thomas Leonard;Samuel Liu;Mahshid Alamdar;Harrison Jin;Can Cui;Otitoaleke G. Akinola;Lin Xue;T. Xiao;J. Friedman;M. Marinella;C. Bennett;J. Incorvia
- 通讯作者:Thomas Leonard;Samuel Liu;Mahshid Alamdar;Harrison Jin;Can Cui;Otitoaleke G. Akinola;Lin Xue;T. Xiao;J. Friedman;M. Marinella;C. Bennett;J. Incorvia
Lateral inhibition in magnetic domain wall racetrack arrays for neuromorphic computing
用于神经形态计算的磁畴壁跑道阵列的横向抑制
- DOI:10.1117/12.2568870
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Cui, Can;Akinola, Otitoaleke G.;Hassan, Naimul;Bennett, Christopher H.;Marinella, Matthew J.;Friedman, Joseph S.;Incorvia, Jean Anne
- 通讯作者:Incorvia, Jean Anne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Friedman其他文献
Looking Back on COVID-19 and the Evolving Drug Overdose Crisis: Updated Trends Through 2022.
回顾 COVID-19 和不断演变的药物过量危机:2022 年的最新趋势。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:12.7
- 作者:
Joseph Friedman - 通讯作者:
Joseph Friedman
Improving the estimation of educational attainment: New methods for assessing average years of schooling from binned data
改进教育程度的估计:根据分箱数据评估平均受教育年限的新方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.7
- 作者:
Joseph Friedman;Nicholas Graetz;E. Gakidou - 通讯作者:
E. Gakidou
Joseph Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Friedman', 18)}}的其他基金
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
Collaborative Research: 2D Ambipolar Machine Learning & Logical Computing Systems
合作研究:2D 双极机器学习
- 批准号:
2154314 - 财政年份:2022
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
CAREER: Bottom-Up Localized Online Learning with Spintronic Neuromorphic Networks
职业:利用自旋电子神经形态网络进行自下而上的本地化在线学习
- 批准号:
2146439 - 财政年份:2022
- 资助金额:
$ 19.11万 - 项目类别:
Continuing Grant
相似国自然基金
单细胞分辨率下的石杉碱甲介导小胶质细胞极化表型抗缺血性脑卒中的机制研究
- 批准号:82304883
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FATP2/HILPDA/SLC7A11轴介导肿瘤相关中性粒细胞脂代谢重编程影响非小细胞肺癌放疗免疫的作用和机制研究
- 批准号:82373304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403560 - 财政年份:2024
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 19.11万 - 项目类别:
Standard Grant