OAC Core: Small: Scalable Non-linear Dimensionality Reduction Methods to Accelerate Scientific Discovery
OAC 核心:小型:加速科学发现的可扩展非线性降维方法
基本信息
- 批准号:1910539
- 负责人:
- 金额:$ 49.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The progress in science and engineering increasingly depends on our ability to analyze massive amounts of observed and simulated data. The vast majority of this data, coming from high-performance high-fidelity simulations, high-resolution sensors, or Internet connected devices, arise from physical processes that, while complex and nonlinear, depend on only few parameters. However, these low-dimension parameters are often hidden in the deluge of high-dimensional data, and are frequently impossible to discover, and thus reason about, by the existing methods. This project will develop new efficient methods to help scientists and engineers, especially in manufacturing and robotics, to simplify complex data such that dynamic processes underlying the data can be better represented, understood and controlled. By leveraging nation?s advanced cyberinfrastructure, these methods will accelerate pace of materials design, reduce the cost and time-to-market of tailored devices, and aid the design, control, and operation of new complex robotic systems. The research outcomes of the project are closely integrated with the educational components, to train the next generation of scientists and engineers on these new technologies, resulting in a skilled and globally competent workforce, especially in the high-priority areas of Artificial Intelligence, Data Science, and Scientific Computing. This project thus promotes advancement of science, welfare and prosperity, as stated by NSF's mission.This multidisciplinary research project aims at developing scalable end-to-end non-linear dimensionality reduction based solutions to accurately learn the dynamic behavior of complex systems. To this end the project introduces new parallel primitives and algorithmic innovations to enable deployment of non-linear spectral dimensionality reduction (NLSDR) and manifold learning methods on the next generation extreme scale computing systems. The project is based on the following key components: i) development of novel locality-aware data distribution and task scheduling strategies for individual NLSDR building blocks taking into account their inter-dependencies when executing in distributed memory environments such as Message Passing Interface and Map/Reduce clusters of multi-core processors, ii) design of new algorithmic strategies to manage data influx while maintaining crucial properties of the sub-manifold characterized by the data, and, iii) development of end-to-end solutions for two transformative example applications pertaining to advanced manufacturing and robotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程的进步越来越多地取决于我们分析大量观察到和模拟数据的能力。这些数据的绝大多数来自高性能的高保真模拟,高分辨率传感器或Internet连接的设备,这是由物理过程产生的,尽管复杂和非线性仅取决于很少的参数。但是,这些低维参数通常隐藏在高维数据的泛滥中,并且经常无法通过现有方法发现,因此也是如此。该项目将开发新的有效方法,以帮助科学家和工程师,尤其是在制造和机器人方面,以简化复杂的数据,从而可以更好地表示,理解和控制数据的动态过程。通过利用Nation的高级网络基础设施,这些方法将加速材料设计的速度,降低定制设备的成本和上市时间,并帮助新的复杂机器人系统的设计,控制和操作。该项目的研究成果与教育组成部分紧密融合,以培训下一代的科学家和工程师在这些新技术上,从而培养了熟练且具有全球胜任的劳动力,尤其是在人工智能,数据科学和科学计算的高优势领域。因此,正如NSF的使命所述,该项目促进了科学,福利和繁荣的进步。本多学科研究项目旨在开发可扩展的端到端非线性降低基于基于基于基于的非线性方案的解决方案,以准确了解复杂系统的动态行为。为此,该项目介绍了新的平行原始图和算法创新,以实现下一代极限规模计算系统上的非线性光谱降低降低(NLSDR)和流动学习方法。 The project is based on the following key components: i) development of novel locality-aware data distribution and task scheduling strategies for individual NLSDR building blocks taking into account their inter-dependencies when executing in distributed memory environments such as Message Passing Interface and Map/Reduce clusters of multi-core processors, ii) design of new algorithmic strategies to manage data influx while maintaining crucial properties of the sub-manifold characterized by the数据,以及,iii)开发了与高级制造和机器人技术有关的两个变革性示例应用程序的端到端解决方案。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛影响的评估标准来评估值得通过评估来支持的。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How important is microstructural feature selection for data-driven structure-property mapping?
微观结构特征选择对于数据驱动的结构-性能映射有多重要?
- DOI:10.1557/s43579-021-00147-4
- 发表时间:2022
- 期刊:
- 影响因子:1.9
- 作者:Liu, Hao;Yucel, Berkay;Wheeler, Daniel;Ganapathysubramanian, Baskar;Kalidindi, Surya R.;Wodo, Olga
- 通讯作者:Wodo, Olga
Learning Manifolds from Dynamic Process Data
从动态过程数据中学习流形
- DOI:10.3390/a13020030
- 发表时间:2020
- 期刊:
- 影响因子:2.3
- 作者:Schoeneman, Frank;Chandola, Varun;Napp, Nils;Wodo, Olga;Zola, Jaroslaw
- 通讯作者:Zola, Jaroslaw
Solving All-Pairs Shortest-Paths Problem in Large Graphs Using Apache Spark
使用 Apache Spark 解决大型图中的全对最短路径问题
- DOI:10.1145/3337821.3337852
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Schoeneman, Frank;Zola, Jaroslaw
- 通讯作者:Zola, Jaroslaw
Tracking clusters and anomalies in evolving data streams
- DOI:10.1002/sam.11552
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Sreelekha Guggilam;V. Chandola;A. Patra
- 通讯作者:Sreelekha Guggilam;V. Chandola;A. Patra
Efficient Execution of Dynamic Programming Algorithms on Apache Spark
- DOI:10.1109/cluster49012.2020.00044
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:M. Javanmard;Zafar Ahmad;J. Zola;L. Pouchet;R. Chowdhury;R. Harrison
- 通讯作者:M. Javanmard;Zafar Ahmad;J. Zola;L. Pouchet;R. Chowdhury;R. Harrison
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaroslaw Zola其他文献
COMODO: Configurable morphology distance operator
- DOI:
10.1016/j.commatsci.2024.113208 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Parth Desai;Namit Juneja;Varun Chandola;Jaroslaw Zola;Olga Wodo - 通讯作者:
Olga Wodo
SCoOL - Scalable Common Optimization Library
SCoOL - 可扩展的通用优化库
- DOI:
10.1109/hipc58850.2023.00045 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zainul Abideen Sayed;Jaroslaw Zola - 通讯作者:
Jaroslaw Zola
Jaroslaw Zola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaroslaw Zola', 18)}}的其他基金
Mentoring the Next Generation of Parallel Processing Researchers at IEEE-CSTCPP Sponsored Conferences
在 IEEE-CSTCPP 赞助的会议上指导下一代并行处理研究人员
- 批准号:
1937369 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
CAREER: Scalable Software and Algorithmic Infrastructure for Probabilistic Graphical Modeling
职业:用于概率图形建模的可扩展软件和算法基础设施
- 批准号:
1845840 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Continuing Grant
CNS Core: Small: Rethinking the Software Architecture for Mobile DNA Analysis
CNS 核心:小型:重新思考移动 DNA 分析的软件架构
- 批准号:
1910193 - 财政年份:2019
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: Mentoring the Next Generation of Parallel Processing Researchers at IPDPS and other IEEE-CSTCPP Sponsored Conferences
协作研究:在 IPDPS 和其他 IEEE-CSTCPP 赞助的会议上指导下一代并行处理研究人员
- 批准号:
1832257 - 财政年份:2018
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Student Travel Support: ACM International Workshop on Big Data in Life Sciences, Seattle, WA, October 2, 2016
学生旅行支持:ACM 国际生命科学大数据研讨会,华盛顿州西雅图,2016 年 10 月 2 日
- 批准号:
1638757 - 财政年份:2016
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: Student Travel Support: International Workshop on Big Data in Life Sciences, Newport Beach, CA, September 20, 2014
合作研究:学生旅行支持:生命科学大数据国际研讨会,加利福尼亚州纽波特比奇,2014 年 9 月 20 日
- 批准号:
1444794 - 财政年份:2014
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
- 批准号:
1460244 - 财政年份:2014
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: Student Travel Support: International Workshop on Big Data in Life Sciences, Newport Beach, CA, September 20, 2014
合作研究:学生旅行支持:生命科学大数据国际研讨会,加利福尼亚州纽波特比奇,2014 年 9 月 20 日
- 批准号:
1461484 - 财政年份:2014
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Sculpting fluid flow using a programmed sequence of micro-pillars
合作研究:CDS
- 批准号:
1307743 - 财政年份:2013
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2412329 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2007775 - 财政年份:2020
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: CNS core: OAC core: Small: New Techniques for I/O Behavior Modeling and Persistent Storage Device Configuration
合作研究: CNS 核心:OAC 核心:小型:I/O 行为建模和持久存储设备配置新技术
- 批准号:
2008324 - 财政年份:2020
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
- 批准号:
2007789 - 财政年份:2020
- 资助金额:
$ 49.98万 - 项目类别:
Standard Grant