SHF: Small: Collaborative Research: Software Hardware Architecture Co-design for Low-power Heterogeneous Edge Devices

SHF:小型:协作研究:低功耗异构边缘设备的软件硬件架构协同设计

基本信息

  • 批准号:
    1909963
  • 负责人:
  • 金额:
    $ 32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The advancement of deep learning techniques, a sub-field of machine learning, is profoundly changing the field of mobile edge computing, thanks to recent research demonstrating that deep learning methods provide significant performance gains. However, the requirement of heavy computations and resources prevent deep learning methods from being widely deployed in mobile edge devices, such as smartphones and Internet of Things (IoT) devices. A significant advantage of enabling deep learning methods in mobile edge devices is that it can drastically reduce the response delay and energy consumption of mobile applications because the computations are executed locally. By removing the barrier that keeps deep learning techniques away from pervasive low-power mobile edge computing devices, this research enables high-accuracy, low-latency applications in future mobile edge computing. In particular, this research systematically investigates the fundamental and challenging issues targeting to significantly reduce the cost of deep learning inference process in mobile edge devices with guaranteed performance. The success of this project could significantly benefit the entire spectrum of deep learning across various research domains, including computer architecture, mobile sensing, cyber security, and human-computer interaction research areas. This project also aims to develop new curricula and encourage the participation of female engineering students. The primary goal of this research is to build a software accelerator that enables the broad deployment of heavy-cost deep learning models into resource-constrained, heterogeneous mobile edge devices (e.g., low-cost sensing platforms and IoT devices). The basic idea is to develop deep-learning resource management algorithms that can adjust structures of different deep learning models according to hardware constraints of heterogeneous edge devices. More specifically, this research analyzes distinct deep learning behaviors on mobile edge devices and designs different strategies to improve the efficiency of multiple deep-learning-based inference models. Furthermore, this research develops algorithms that can adjust the complexity of different deep learning models to reduce their energy and memory consumption on mobile edge devices. In addition, this project designs power-centric resource reallocation algorithms to verify and deploy the mobile-friendly deep learning models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习技术的进步是机器学习的一个子场,它正在深刻地改变移动边缘计算的领域,这要归功于最近的研究表明,深度学习方法可带来显着的性能提高。但是,重度计算和资源的要求阻止了深度学习方法被广泛部署在移动边缘设备中,例如智能手机和物联网(IoT)设备。在移动边缘设备中启用深度学习方法的一个重要优点是,它可以大大减少移动应用程序的响应延迟和能源消耗,因为计算是在本地执行的。通过删除使深度学习技术远离普遍的低功耗移动边缘计算设备的障碍,该研究可以在未来的移动边缘计算中实现高质量,低延迟应用。特别是,这项研究系统地研究了针对性的基本和具有挑战性的问题,以显着降低具有保证性能的移动边缘设备中深度学习推断过程的成本。该项目的成功可以显着使整个研究领域的深度学习范围都受益,包括计算机架构,移动传感,网络安全和人类计算机互动研究领域。该项目还旨在开发新的课程,并鼓励女性工程专业的学生参与。这项研究的主要目的是建立一个软件加速器,该软件加速器可以将重成本深度学习模型广泛部署到资源受限的,异质的移动边缘设备(例如,低成本传感平台和物联网设备)中。基本思想是开发深度学习资源管理算法,这些算法可以根据异质边缘设备的硬件约束来调整不同深度学习模型的结构。更具体地说,这项研究分析了移动边缘设备上的不同深度学习行为,并设计了不同的策略,以提高多个基于深度学习的推理模型的效率。此外,这项研究开发了算法,可以调整不同深度学习模型的复杂性,以减少其在移动边缘设备上的能量和记忆消耗。此外,该项目还设计了以功率为中心的资源重新分配算法来验证和部署移动友好的深度学习模型。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来进行评估的支持标准。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stealthy Backdoor Attack on RF Signal Classification
TrueHeart: Continuous Authentication on Wrist-worn Wearables Using PPG-based Biometrics
MIXP: Efficient Deep Neural Networks Pruning for Further FLOPs Compression via Neuron Bond
  • DOI:
    10.1109/ijcnn52387.2021.9533522
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bin Hu;Tianming Zhao;Yucheng Xie;Yan Wang;Xiaonan Guo;Jerry Q. Cheng;Yingying Chen
  • 通讯作者:
    Bin Hu;Tianming Zhao;Yucheng Xie;Yan Wang;Xiaonan Guo;Jerry Q. Cheng;Yingying Chen
mmFit: Low-Effort Personalized Fitness Monitoring Using Millimeter Wave
Environment-independent In-baggage Object Identification Using WiFi Signals
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingying Chen其他文献

Renewable wood-derived hierarchical porous, N-doped carbon sheet as a robust self-supporting cathodic electrode for zinc-air batteries
可再生木材衍生的分层多孔氮掺杂碳片作为锌空气电池的坚固自支撑阴极电极
  • DOI:
    10.1016/j.cclet.2022.03.112
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Xiaohua Deng;Zhu Jiang;Yingying Chen;Dai Dang;Quanbing Liu;Xiaoyang Wang;Xu Yang
  • 通讯作者:
    Xu Yang
Bipartite Graph Matching Based Secret Key Generation
基于二分图匹配的密钥生成
Preparation of novel injectable photo-crosslinked collagen gels by a fast and simple method
快速简便的方法制备新型可注射光交联胶原凝胶
  • DOI:
    10.1016/j.matlet.2023.133911
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Riwang Li;Jie Li;Daoqiang Lu;Ziwen zhang;Na Li;Di Wu;Jun Wang;Huiying Feng;Wanying Zhang;Yingying Chen;Dahai Liu;Yilong Ai;Lihua Li
  • 通讯作者:
    Lihua Li
UV light-assisted fabrication of Cu0.91In0.09S microspheres sensitized TiO2 nanotube arrays and their photoelectrochemical properties
紫外光辅助制备Cu0.91In0.09S微球敏化TiO2纳米管阵列及其光电化学性能
  • DOI:
    10.1016/j.materresbull.2014.12.071
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Xinyu Cui;Hongmei Gu;Yuanyuan Yin;Yue Guan;Shengzhong Rong;Yongkui Yin;Yingying Chen;Qunhong Wu;Yanhua Hao;Miaojing Li
  • 通讯作者:
    Miaojing Li
Who Will Tell the Stories of Health Inequities? Platform Challenges (and Opportunities) in Local Civic Information Infrastructure
谁来讲述健康不平等的故事?
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ava Francesca Battocchio;Kjerstin Thorson;Dan Hiaeshutter;Marisa Smith;Yingying Chen;S. Edgerly;Kelley Cotter;Hyesun Choung;Chuqing Dong;Moldir Moldagaliyeva;Christopher E. Etheridge
  • 通讯作者:
    Christopher E. Etheridge

Yingying Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingying Chen', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
  • 批准号:
    2211163
  • 财政年份:
    2022
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120396
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks
协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备
  • 批准号:
    2114220
  • 财政年份:
    2021
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028876
  • 财政年份:
    2020
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
  • 批准号:
    1814590
  • 财政年份:
    2018
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1716500
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1826647
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1820624
  • 财政年份:
    2017
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514436
  • 财政年份:
    2015
  • 资助金额:
    $ 32万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了