SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
基本信息
- 批准号:1716500
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The rapid development of information technology not only leads to great convenience in our daily lives, but also raises significant concerns in the field of security and privacy. Particularly, the authentication process, which serves as the first line of information security by verifying the identity of a person or device, has become increasingly critical. An unauthorized access could result in detrimental impact on both corporation and individual in both secrecy loss and privacy leakage. Unlike many existing studies on user/device authentication, which either employ specialized or expensive hardware that needs experts for installation and calibration or require users' active involvement, the emerging low-cost and unobtrusive authentication solution without the users' participation is particularly attractive to effectively complement conventional security approaches. Due to the rich wireless connectivity and unique signal characteristics in pervasive wireless environments, this project takes a different view point by exploiting unique physical properties in wireless networks to facilitate implicit authentication for both human and mobile devices. The proposed research could advance our knowledge in exploiting the physical layer information in wireless networks to capture unique physiological and behavioral characteristics from human during their daily activities. It could also enhance our understanding in developing deep learning techniques to authenticate people based on their activities in the physical environments. Additionally, the educational efforts include curriculum development, K-12 and undergraduate involvement, and underrepresented student engagement in research.This project focuses on building a holistic framework that leverages fine-grained radio signals available from the commercial wireless networks to perform implicit user/device authentication. The proposed framework aims to advance the foundation of integrating fine-grained physical properties in wireless networks to enhance wireless security. The research reveals that the fine-grained signal properties in wireless networks are capable to capture unique physiological and behavioral characteristics from human in both stationary and mobile daily activities. The proposed framework develops smart segmentation on the wireless signals and extract unique features that enable the capability of distinguishing individual. It further develops deep learning techniques to authenticate people based on their daily activities in the physical environments. The authentication process does not require active user involvement nor require the user to wear any device. This project also develops efficient techniques to detect the presence of user spoofing and localize attackers to facilitate the employment of a broad array of defending strategies.
信息技术的快速发展不仅会在我们的日常生活中提供极大的便利,而且在安全和隐私领域引起了重大关注。特别是,通过验证人员或设备的身份作为第一条信息安全性的身份验证过程变得越来越重要。未经授权的访问可能会导致对公司和个人的保密损失和隐私泄漏的影响。与许多有关用户/设备身份验证的现有研究不同,这些研究使用专业或昂贵的硬件需要专家进行安装和校准,或者需要用户积极参与,而没有用户参与的新出现的低成本和不引人注目的身份验证解决方案特别有吸引力,这对于有效地补充常规安全方法特别有吸引力。由于无线连接性丰富和无线环境中的独特信号特性,该项目通过利用无线网络中的独特物理属性来促进人体和移动设备的隐式身份验证,从而取得了不同的观点。拟议的研究可以促进我们的知识来利用无线网络中的物理层信息,以在日常活动中捕获人类的独特生理和行为特征。它还可以增强我们在开发深度学习技术方面的理解,以根据他们在物理环境中的活动来验证人们。此外,教育努力包括针对研究,K-12和本科参与,以及代表不足的学生参与研究。该项目着重于建立一个整体框架,该框架利用商业无线网络可获得的精细广播信号来执行隐式用户/设备的验证。拟议的框架旨在提高整合无线网络中细粒物理特性以增强无线安全性的基础。该研究表明,无线网络中的细粒信号特性能够在固定和移动日常活动中捕获人类的独特生理和行为特征。所提出的框架在无线信号上开发了智能细分,并提取独特的功能,从而可以区分个人。它进一步发展了深度学习技术,以根据人们在物理环境中的日常活动来对其进行身份验证。身份验证过程不需要主动用户参与,也不需要用户佩戴任何设备。该项目还开发了有效的技术,以检测用户欺骗和本地化攻击者的存在,以促进雇用各种各样的防御策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingying Chen其他文献
Topology-based Multi-jammer Localization in Wireless Networks
无线网络中基于拓扑的多干扰机定位
- DOI:
10.1051/sands/2023025 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hongbo Liu;Yingying Chen;Wenyuan Xu;Zhenhua Liu;Yuchen Su - 通讯作者:
Yuchen Su
UV light-assisted fabrication of Cu0.91In0.09S microspheres sensitized TiO2 nanotube arrays and their photoelectrochemical properties
紫外光辅助制备Cu0.91In0.09S微球敏化TiO2纳米管阵列及其光电化学性能
- DOI:
10.1016/j.materresbull.2014.12.071 - 发表时间:
2015-04 - 期刊:
- 影响因子:5.4
- 作者:
Xinyu Cui;Hongmei Gu;Yuanyuan Yin;Yue Guan;Shengzhong Rong;Yongkui Yin;Yingying Chen;Qunhong Wu;Yanhua Hao;Miaojing Li - 通讯作者:
Miaojing Li
Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure
基于三向DNA连接结构的用于microRNA检测的无标记三发光体电化学发光传感器
- DOI:
10.1016/j.jelechem.2020.114935 - 发表时间:
2020-12 - 期刊:
- 影响因子:4.5
- 作者:
Xialing Hou;Zhiguang Suo;Ziheng Hu;Xinying Zhang;Yingying Chen;Lingyan Feng - 通讯作者:
Lingyan Feng
Direct Load Control by Distributed Imperialist Competitive Algorithm
分布式帝国主义竞争算法的直接负载控制
- DOI:
10.1007/s40565-014-0075-x - 发表时间:
2014 - 期刊:
- 影响因子:6.3
- 作者:
Fengji Luo;Junhua Zhao;Haiming Wang;Xiaojiao Tong;Yingying Chen;Zhaoyang Dong - 通讯作者:
Zhaoyang Dong
Acquired persistently complete remission by decitabine-based treatment for acute myeloid leukemia with the MLL-SEPT9 fusion gene
通过基于地西他滨的 MLL-SEPT9 融合基因急性髓系白血病治疗获得持续完全缓解
- DOI:
10.1080/10428194.2019.1625044 - 发表时间:
2019 - 期刊:
- 影响因子:2.6
- 作者:
Fujue Wang;Yingying Chen;N. Jiang;Shuaige Gong;Tingyong Cao;Jin Yuan;Jiazhuo Liu;Li;Yu Wu;Yongqian Jia - 通讯作者:
Yongqian Jia
Yingying Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingying Chen', 18)}}的其他基金
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
- 批准号:
2211163 - 财政年份:2022
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
- 批准号:
2120396 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks
协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备
- 批准号:
2114220 - 财政年份:2021
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
- 批准号:
2028876 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Software Hardware Architecture Co-design for Low-power Heterogeneous Edge Devices
SHF:小型:协作研究:低功耗异构边缘设备的软件硬件架构协同设计
- 批准号:
1909963 - 财政年份:2019
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
- 批准号:
1814590 - 财政年份:2018
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1826647 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
- 批准号:
1820624 - 财政年份:2017
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
- 批准号:
1514436 - 财政年份:2015
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant