CRII: III: Novel Computational Social Choice Extensions for Highly Distributed Decision-Making Contexts

CRII:III:高度分布式决策环境的新型计算社会选择扩展

基本信息

  • 批准号:
    1850355
  • 负责人:
  • 金额:
    $ 17.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Over the last two decades, there has been a growing interest in the aggregation of individual preferences into socially desirable collective choices (e.g., crowdsourced recommendations, online voting), helping to propel the new interdisciplinary field of computational social choice. In many ways, the emphasis on examining whether and how preference aggregation algorithms can be designed to ensure fairness, avoid strategic manipulation, and achieve other socially desirable properties is driven by the largely unchecked prevalence of automated "black-box" decision-making technologies within everyday life. While the rising interest in this new field has resulted in various landmark results, implementation of the more socially beneficial methodologies within modern contexts remains severely limited due to a combination of incompatible assumptions and computational difficulties. This research project will seek to extend the real-world applicability of these robust methodologies by melding socio-theoretical insights, efficient algorithms, and advanced operations research techniques. Accordingly, this novel approach will build interdisciplinary bridges with computer science and expose computational social choice to new audiences. Moreover, through an overarching emphasis on rigorous theoretical underpinnings, the envisioned contributions will address the pressing need to develop and implement interpretable decision-making algorithms. Hence, the outcomes of this project will prospectively have widespread impacts on society. The advances envisioned through the completion of this project will expand the traditional scope of computational social choice, particularly of Kemeny aggregation, which is widely regarded as one of the most robust preference-ranking aggregation frameworks in the literature. The focus of this research project will be on highly distributed decision-making contexts, which are often characterized by large numbers of alternatives, tied (i.e., partial) preferences, errors, and/or incompleteness. This will be accomplished by exploring symbiotic relationships between social choice theory, efficient algorithms, and operations research techniques. Planned research tasks will include: (i) Establishing social choice axioms and properties that different distance measures should satisfy when dealing with partial and incomplete preference rankings; (ii) Constructing mathematical models and decomposition algorithms that take advantage of these insights; and (iii) Exploring the validity and pragmatic implications of these measures via formal statistical methods and benchmark instances of preference data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,人们越来越关注将个人偏好聚合为社会理想的集体选择(例如众包推荐、在线投票),这有助于推动计算社会选择的新跨学科领域。在许多方面,对检查是否以及如何设计偏好聚合算法来确保公平、避免策略操纵和实现其他社会所期望的特性的重视是由自动化“黑匣子”决策技术在很大程度上不受控制的流行所驱动的。日常生活。尽管人们对这一新领域的兴趣日益浓厚,取得了各种具有里程碑意义的成果,但由于不相容的假设和计算困难,在现代背景下实施对社会更有益的方法仍然受到严重限制。该研究项目将寻求通过融合社会理论见解、高效算法和先进的运筹学技术来扩展这些强大方法论的实际适用性。因此,这种新颖的方法将与计算机科学建立跨学科桥梁,并向新受众展示计算社会选择。此外,通过全面强调严格的理论基础,预期的贡献将解决开发和实施可解释决策算法的迫切需要。因此,该项目的成果预计将产生广泛的社会影响。 通过完成该项目所设想的进步将扩大计算社会选择的传统范围,特别是 Kemeny 聚合,它被广泛认为是文献中最强大的偏好排名聚合框架之一。该研究项目的重点将是高度分布式的决策环境,其特征通常是大量替代方案、绑定(即部分)偏好、错误和/或不完整性。这将通过探索社会选择理论、高效算法和运筹学技术之间的共生关系来实现。计划的研究任务将包括:(i)建立社会选择公理和属性,以处理部分和不完整的偏好排名时不同的距离度量应满足的; (ii) 利用这些见解构建数学模型和分解算法; (iii) 通过正式的统计方法和偏好数据的基准实例探索这些措施的有效性和务实影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing Collective Estimates by Aggregating Cardinal and Ordinal Inputs
通过聚合基数和序数输入来增强集体估计
  • DOI:
    10.1609/hcomp.v8i1.7465
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryan Kemmer;Yeawon Yoo;Adolfo R. Escobedo;Ross Maciejewski
  • 通讯作者:
    Ross Maciejewski
A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings
用于比较和汇总非严格和不完整排名的新相关系数
  • DOI:
    10.1016/j.ejor.2020.02.027
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yoo, Yeawon;Escobedo, Adolfo R.;Skolfield, J. Kyle
  • 通讯作者:
    Skolfield, J. Kyle
Approximate Condorcet Partitioning: Solving large-scale rank aggregation problems
近似孔多塞分区:解决大规模排名聚合问题
  • DOI:
    10.1016/j.cor.2023.106164
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Akbari;Adolfo R. Escobedo
  • 通讯作者:
    Adolfo R. Escobedo
Top-k List Aggregation: Mathematical Formulations and Polyhedral Comparisons
Top-k 列表聚合:数学公式和多面体比较
A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation
Kemeny 等级聚合的新二元规划公式和社会选择属性
  • DOI:
    10.1287/deca.2021.0433
  • 发表时间:
    2021-09-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeawon Yoo;Adolfo R. Escobedo
  • 通讯作者:
    Adolfo R. Escobedo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adolfo Escobedo其他文献

Adolfo Escobedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adolfo Escobedo', 18)}}的其他基金

CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Continuing Grant

相似国自然基金

“双循环”背景下第三代半导体创新网络的竞合效应:基于边界拓展和跨网联动的考察
  • 批准号:
    72303054
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
酸枣仁皂苷A对三叉神经痛中P2X7受体介导的NLRP3/Caspase-1通路的作用研究
  • 批准号:
    82360199
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
三维内转进气道唇口弯曲激波复杂干扰机理研究
  • 批准号:
    12302389
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
芯片级原子钟用高效率双功能准三维亚波长结构器件研究
  • 批准号:
    62305252
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂环境下的水下三维路径规划方法研究
  • 批准号:
    62371405
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Defining Optimal Radiotherapy Dose and Fractionation in Combination with Preoperative Immuno-Chemotherapy in Early-Stage Triple Negative Breast Cancer
确定早期三阴性乳腺癌的最佳放疗剂量和分割与术前免疫化疗相结合
  • 批准号:
    10512391
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
Impact of inflammatory lipids on Yersinia pestis infection
炎性脂质对鼠疫耶尔森菌感染的影响
  • 批准号:
    10722648
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
  • 批准号:
    10726508
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
A Pilot Study of the Impact of Personalized Digital Meditation on Improving Cognition and Sleep and Reducing Stress in MCI
个性化数字冥想对改善 MCI 认知和睡眠以及减轻压力影响的初步研究
  • 批准号:
    10726054
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
Systems-Level Approach to Neuronopathic Lysosomal Storage Disorders
神经病性溶酶体贮积症的系统级方法
  • 批准号:
    10721768
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了