RI:Small: Neural Architecture Search with Deep Compositional Grammatical Structures

RI:Small:具有深层组合语法结构的神经架构搜索

基本信息

  • 批准号:
    1909644
  • 负责人:
  • 金额:
    $ 44.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) technologies have recently shown great values in a wide range of applications such as self-driving cars, smart speaker, machine translation, robot autonomy and medical diagnosis. Computer vision (automatic analysis of images and videos) and natural language processing (automatic analysis of text) are two key pillars of AI. Deep learning artificial neural networks are the "brain" of many state-of-the-art AI systems in these two domains. However, much of the neural architectures are still hand-crafted to tailor to individual tasks in each domain, whereas learning in the human brains seems to be more task- and domain-agnostic. This project presents a principled framework to automatically learn neural architectures that are smaller, faster and better for both computer vision and natural language processing tasks. More specifically, the project explores methods of searching for neural architecture based on structural rules that compose smaller units to make bigger units, similar to how grammars in natural languages guides the way sentences are formed. This approach eliminates the efforts of manually engineering neural architectures. The success of this project will significantly advance AI systems in computer vision and natural language processing, thus moving forward other practical applications of AI technologies as well. This project will also integrate educational components by making significant connections with an interdisciplinary set of students and researchers in the Digital Humanities, and preparing demos to engage the K-12 and undergraduate communities.The project proposes three main tasks. The first is to unfold the space of neural architectures with deep compositional grammatical architectures; this allows for learning rich features of deep neural networks in a principled way. The second is to develop grammar-guided neural architecture search. The goal is to search smaller, faster and better deep compositional grammatical architectures by integrating differentiable search and reinforcement learning search in the unfolded space. The third task is to evaluate the proposed work applications. The searched architectures will be used as new feature backbones for existing state-of-the-art deep learning based systems commonly used in computer vision and NLP. The key innovations of this project include: a novel method of grammar-guided network architecture design and search for deep learning, and a unified feature backbone enabling effective and efficient feature exploration and exploitation in computer vision and NLP.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)技术最近在广泛的应用中显示了巨大的价值,例如自动驾驶汽车,智能扬声器,机器翻译,机器人自主权和医学诊断。计算机视觉(图像和视频的自动分析)和自然语言处理(文本自动分析)是AI的两个关键支柱。深度学习的人工神经网络是这两个领域中许多最先进的AI系统的“大脑”。但是,许多神经体系结构仍然是手工制作的,可以根据每个领域的单个任务来量身定制,而在人类大脑中学习似乎是任务和领域 - 无知的。该项目提出了一个原则性的框架,可以自动学习对计算机视觉和自然语言处理任务的较小,更快,更好的神经体系结构。更具体地说,该项目探讨了基于结构规则搜索神经体系结构的方法,该结构规则构成了较小的单元以制造较大的单元,类似于自然语言的语法如何指导句子的形成方式。这种方法消除了手动工程神经体系结构的努力。该项目的成功将在计算机视觉和自然语言处理中大大提高AI系统,从而推动AI技术的其他实际应用。该项目还将通过与数字人文学科中的学生和研究人员建立巨大的联系,并准备演示与K-12和本科社区的互动。该项目提出三个主要任务。首先是用深层的构图语法结构展开神经体系结构的空间。这可以以原则性的方式学习深神网络的丰富特征。第二个是开发语法引导的神经体系结构搜索。目的是通过在未折叠的空间中整合可区分的搜索和强化学习搜索来搜索较小,更快,更好的深层构图语法体系结构。第三个任务是评估拟议的工作应用程序。搜索的体系结构将用作现有的基于计算机视觉和NLP中常用的基于最新深度学习的系统的新功能骨干。该项目的关键创新包括:一种新颖的语法引导网络架构设计和寻找深度学习的方法,以及一个统一的功能骨干,在计算机视觉和NLP中实现有效,有效的功能探索和剥削。该奖项反映了NSF的法规任务,并被认为是通过基金会的知识优点和广泛的critia crietia criter criter scriter criter critia criter critia criter criteria criter criteria criter criteria criteria criter criteria criteria crietia crietia crietia crietia crietia crietia criteria均值得一提。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holistically-Attracted Wireframe Parsing
Attentive Normalization
  • DOI:
    10.1007/978-3-030-58520-4_5
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xilai Li;Wei Sun-;Tianfu Wu
  • 通讯作者:
    Xilai Li;Wei Sun-;Tianfu Wu
NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction
Learning Ordered Top-k Attacks via Adversarial Distillation
通过对抗性蒸馏学习有序 Top-k 攻击
Learning Local-Global Contextual Adaptation for Multi-Person Pose Estimation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tianfu Wu其他文献

Proteomics on the diagnostic horizon: Lessons from rheumatology.
诊断领域的蛋白质组学:风湿病学的教训。
Real-time Scene Segmentation Using a Light Deep Neural Network Architecture for Autonomous Robot Navigation on Construction Sites
使用轻型深度神经网络架构进行实时场景分割,用于建筑工地上的自主机器人导航
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khashayar Asadi;Pengyu Chen;Kevin K. Han;Tianfu Wu;Edgar J. Lobaton
  • 通讯作者:
    Edgar J. Lobaton
Decision Level Fusion: An Event Driven Approach
决策级融合:事件驱动方法
Immunosensors for Biomarker Detection in Autoimmune Diseases
用于自身免疫性疾病生物标志物检测的免疫传感器
Building an Integrated Mobile Robotic System for Real-Time Applications in Construction
构建用于建筑实时应用的集成移动机器人系统

Tianfu Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tianfu Wu', 18)}}的其他基金

Empowering Wireless Networks with Collective Wisdom
以集体智慧赋能无线网络
  • 批准号:
    2203214
  • 财政年份:
    2022
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Standard Grant

相似国自然基金

CB2R-β-arrestin1抑制小胶质细胞代谢重编程调控神经炎症在改善POCD中的机制研究
  • 批准号:
    82360227
  • 批准年份:
    2023
  • 资助金额:
    32.2 万元
  • 项目类别:
    地区科学基金项目
电针治疗卒中后认知障碍新机制:下调HK2介导的海马Warburg效应调控小胶质细胞极化缓解神经炎症
  • 批准号:
    82305403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小胶质细胞外泌体通过miR-486抑制神经元铁死亡介导电针修复脊髓损伤的机制研究
  • 批准号:
    82360454
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于Rab8A介导的小胶质细胞铁稳态及神经炎症调控探讨灵芝提取物改善LRRK2-G2019S突变介导的帕金森病的机制
  • 批准号:
    82305015
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MSC小细胞外囊泡转运CAMK2D上调Eno3促进坐骨神经再生的作用及机制
  • 批准号:
    82301567
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Semantic 3D Neural Rendering Field Models that are Accurate, Complete, Flexible, and Scalable
RI:小型:准确、完整、灵活且可扩展的语义 3D 神经渲染场模型
  • 批准号:
    2312102
  • 财政年份:
    2023
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Continuing Grant
RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks
RI:小:理解神经网络中不变性和多尺度引起的归纳偏差
  • 批准号:
    2213335
  • 财政年份:
    2022
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Standard Grant
RI: Small: The TAO algorithm: principled, efficient optimization of decision trees, forests, tree-based neural nets, and beyond
RI:小:TAO 算法:决策树、森林、基于树的神经网络等的原则性、高效优化
  • 批准号:
    2007147
  • 财政年份:
    2020
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Standard Grant
RI: Small: Neural Sequences as a Robust Dynamic Regime for Spatiotemporal Time Invariant Computations.
RI:小:神经序列作为时空时不变计算的鲁棒动态机制。
  • 批准号:
    2008741
  • 财政年份:
    2020
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Standard Grant
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
  • 批准号:
    2006747
  • 财政年份:
    2020
  • 资助金额:
    $ 44.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了