RI: Small: Understanding the Inductive Bias Caused by Invariance and Multi Scale in Neural Networks

RI:小:理解神经网络中不变性和多尺度引起的归纳偏差

基本信息

  • 批准号:
    2213335
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Deep neural networks have had a huge recent impact on the world. They are widely used in systems that understand speech, translate language, and analyze images. In spite of their great impact, researchers still lack a rigorous understanding of many of the basic properties of these networks. As a consequence, new networks are largely designed laboriously, through trial and error. And although extremely effective overall, these systems are sometimes fooled by examples that seem very simple, and similar to other examples that are easily handled. This research aims to provide a better theoretical understanding of an important class of neural networks, called Convolutional Neural Networks (CNNs), which are widely used in understanding images and audio signals. The project focuses on understanding what problems will be easy or difficult for CNNs. This understanding can help us to predict biases in these networks and understand how the design of a network will affect its behavior. The project will provide research opportunities for graduate, undergraduate and high school students, particularly reaching out to students from underrepresented groups.Two key properties that distinguish CNNs from many other approaches to machine learning are their ability to naturally incorporate multiscale analysis and invariance or equivariance. This property has enabled the construction of shift invariant networks that effectively deal with images and signals sampled on grid data, and more recently of networks that handle sets and graphs, incorporating operations that are equivariant to set permutation and graph isomorphism. Multiscale representations naturally arise in these networks through their depth. This research focuses on gaining a better understanding of the role of multiscale, invariance and equivariance in neural networks. It will study how shift invariance and multiscale representations affect the dynamics of neural network training. Our approach will build on recent results showing that massively overparameterized neural networks can be represented as kernel methods. Analyzing the properties of these kernels will help us understand the relationship between a network's architecture and its inductive biases. The insights revealed have the potential to provide a more principled way to control these biases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络对世界产生了巨大影响。它们被广泛用于了解语音,翻译语言和分析图像的系统。尽管产生了巨大的影响,但研究人员仍然缺乏对这些网络的许多基本特性的严格理解。结果,通过反复试验,新网络在很大程度上是费力地设计的。尽管总体而言非常有效,但这些系统有时被看起来很简单的示例所欺骗,并且类似于其他容易处理的示例。这项研究旨在对重要类别的神经网络(称为卷积神经网络(CNN))提供更好的理论理解,该网络被广泛用于理解图像和音频信号。该项目专注于了解CNN的问题将很容易或困难。这种理解可以帮助我们预测这些网络中的偏见,并了解网络的设计将如何影响其行为。该项目将为研究生,本科和高中生提供研究机会,尤其是与代表性不足的学生接触。将CNN与许多其他方法与机器学习区分开来的关键特性是他们自然融合多阶段分析和不变性和不变性或等价合理的能力。该属性已启用了换档不变网络的构建,该网络有效地处理了在网格数据上采样的图像和信号,以及最近处理的网络处理集合和图形,并结合了具有置换置换和图形同构的操作。这些网络通过其深度自然出现多尺度表示。这项研究重点是更好地了解多尺度,不变性和均衡性在神经网络中的作用。它将研究转移不变性和多尺度表示如何影响神经网络训练的动态。我们的方法将基于最近的结果,表明大量过度参数化的神经网络可以表示为核方法。分析这些内核的属性将有助于我们了解网络架构及其归纳偏见之间的关系。揭示的见解有可能提供一种更有原则的方法来控制这些偏见。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
LD-ZNet: A Latent Diffusion Approach for Text-Based Image Segmentation
HaLP: Hallucinating Latent Positives for Skeleton-based Self-Supervised Learning of Actions
  • DOI:
    10.1109/cvpr52729.2023.01807
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anshul B. Shah;A. Roy;Ketul Shah;Shlok Kumar Mishra;David W. Jacobs;A. Cherian;Ramalingam Chellappa
  • 通讯作者:
    Anshul B. Shah;A. Roy;Ketul Shah;Shlok Kumar Mishra;David W. Jacobs;A. Cherian;Ramalingam Chellappa
Hyperbolic Contrastive Learning for Visual Representations beyond Objects
Autoregressive Perturbations for Data Poisoning
  • DOI:
    10.48550/arxiv.2206.03693
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pedro Sandoval-Segura;Vasu Singla;Jonas Geiping;Micah Goldblum;T. Goldstein;David Jacobs
  • 通讯作者:
    Pedro Sandoval-Segura;Vasu Singla;Jonas Geiping;Micah Goldblum;T. Goldstein;David Jacobs
Measured Albedo in the Wild: Filling the Gap in Intrinsics Evaluation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Jacobs其他文献

GaNI: Global and Near Field Illumination Aware Neural Inverse Rendering
GaNI:全局和近场照明感知神经逆向渲染
  • DOI:
    10.48550/arxiv.2403.15651
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaye Wu;Saeed Hadadan;Geng Lin;Matthias Zwicker;David Jacobs;Roni Sengupta
  • 通讯作者:
    Roni Sengupta
RACIAL THREAT, PARTISAN POLITICS, AND RACIAL DISPARITIES IN PRISON ADMISSIONS: A PANEL ANALYSIS*
入狱中的种族威胁、党派政治和种族差异:小组分析*
  • DOI:
    10.1111/j.1745-9125.2009.00143.x
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    B. Keen;David Jacobs
  • 通讯作者:
    David Jacobs
S17-03 Differences in the wing and hindlimb transcriptomes of the natal long-fingered bat, <em>Miniopterus natalensis</em>, during embryonic development
  • DOI:
    10.1016/j.mod.2009.06.1015
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mandy Mason;Dorit Hockman;David Jacobs;Nicola Illing
  • 通讯作者:
    Nicola Illing
PD47-08 CORONARY ARTERY CALCIUM SCORE AND ASSOCIATION WITH RECURRENT NEPHROLITHIASIS: THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS
  • DOI:
    10.1016/j.juro.2016.02.2696
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ryan Hsi;Andrew Spieker;Marshall Stoller;David Jacobs;Alex Reiner;Robyn McClelland;Arnold Kahn;Thomas Chi;Moyses Mzklo;Mathew Sorensen
  • 通讯作者:
    Mathew Sorensen
Maneuver Identification Challenge
机动识别挑战

David Jacobs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Jacobs', 18)}}的其他基金

RI: NSF-BSF: Small: Reconstructing Shape, Lighting and Reflectance Properties of Indoor Scenes from Video
RI:NSF-BSF:小型:从视频重建室内场景的形状、照明和反射率属性
  • 批准号:
    1910132
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RI: Small: Bounded Distortion Models for Articulated and Deformable Object Recognition
RI:小:用于铰接和可变形物体识别的有界畸变模型
  • 批准号:
    1526234
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
RI: Small: Collaborative Research: Visual Attributes for Identification and Search in Images
RI:小型:协作研究:图像中识别和搜索的视觉属性
  • 批准号:
    1116631
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: An interdisciplinary approach to testing intraspecific evolutionary processes
论文研究:测试种内进化过程的跨学科方法
  • 批准号:
    1110538
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RI:Small:Robust Image Matching with Deformations and Lighting Variation
RI:小:具有变形和光照变化的鲁棒图像匹配
  • 批准号:
    0915977
  • 财政年份:
    2009
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Statistical Shape Models to Aid in Plant Species Identification
帮助植物物种识别的统计形状模型
  • 批准号:
    0836823
  • 财政年份:
    2008
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The Political Context of Union Certification Elections
博士论文研究:工会认证选举的政治背景
  • 批准号:
    0526315
  • 财政年份:
    2005
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Survival on Death Row: Exploring Individual, Conflict, and Political Explanations for Executions
死囚牢房中的生存:探索处决的个人、冲突和政治解释
  • 批准号:
    0417736
  • 财政年份:
    2004
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
U.S.-Sweden Workshop: Worldwide Access of Emerging Mathematical Technology, Stockholm, Sweden, August 1995
美国-瑞典研讨会:新兴数学技术的全球普及,瑞典斯德哥尔摩,1995 年 8 月
  • 批准号:
    9500299
  • 财政年份:
    1995
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Deciding Identities in Nonassociative Algebras with Dynamic Programming
用动态规划确定非关联代数中的恒等式
  • 批准号:
    8905534
  • 财政年份:
    1989
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

小麦抗旱耐盐小分子多肽基因TaCLE3B的功能鉴定及分子机理解析
  • 批准号:
    U22A20471
  • 批准年份:
    2022
  • 资助金额:
    252.00 万元
  • 项目类别:
    联合基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
小偃麦盐胁迫响应转录因子TtFAR1的功能及调控机理解析
  • 批准号:
    32160442
  • 批准年份:
    2021
  • 资助金额:
    35.00 万元
  • 项目类别:
    地区科学基金项目
非小细胞肺癌干性抑癌基因的系统筛选及机理解析
  • 批准号:
    81972778
  • 批准年份:
    2019
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
海量数据小训练样本集环境下的高效图像理解
  • 批准号:
    61572451
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目

相似海外基金

RI: Small: Understanding Hand Interaction In The Jumble of Internet Videos
RI:小:在混乱的互联网视频中理解手部交互
  • 批准号:
    2426592
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232300
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232299
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了