Heegaard Splitting and Topology of 3-Manifolds
三流形的 Heegaard 分裂和拓扑
基本信息
- 批准号:1906235
- 负责人:
- 金额:$ 25.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three-manifolds are objects modeled on the three-dimensional space that we live in. A donut and the spatial universe are both examples of three-manifolds. These objects arise naturally in many contexts in physical and other natural sciences, and can be used to model many interesting phenomena. The main goal of this project is to study the mathematical properties of three-manifolds. The PI plans to investigate some central questions in a branch of mathematics, known as low dimensional topology. These questions are concerned with how three-manifolds change under certain maps as well as operations called surgeries. The major tool that the PI uses is a topological structure called Heegaard splitting, which is a decomposition of a complicated three-manifold into simpler pieces along a two-dimensional surface. This research targets some of the fundamental questions in low-dimensional topology and knot theory. It also has a potential impact on other areas of scientific investigations, such as the topological structures of DNA. In this project, the PI will study the topology of three-manifolds. The project has three major parts. The first part is to explore a new approach to proving the Berge Conjecture. The Berge Conjecture can be divided into two halves: the first half is to prove the Berge Conjecture for knots with tunnel number one, and the second half is to show that if a nontrivial knot in the three-sphere admits a lens-space Dehn surgery, then the knot must have tunnel number one. The PI and his collaborators have carried out an in-depth study on the first half. The same approach may lead to a proof of the second half of the Berge Conjecture. The second part of the research is to study a long-standing conjecture concerning Heegaard genus and degree-one map. The PI will investigate this conjecture using special type of surgeries. The objective of the last part of the research is to study several fundamental questions in three-manifold topology concerning Heegaard splittings and curve complex. The PI plans to develop new tools and use techniques from his previous work to achieve these goals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三个manifolds是在我们所居住的三维空间上建模的对象。甜甜圈和空间宇宙都是三个manifolds的例子。这些物体在物理和其他自然科学的许多情况下自然出现,可用于模拟许多有趣的现象。该项目的主要目的是研究三个manifolds的数学特性。 PI计划在数学分支中调查一些中心问题,称为低维拓扑。这些问题涉及在某些地图和称为手术的操作下如何变化的三个manifolds。 PI使用的主要工具是拓扑结构,称为Heegaard拆分,这是复杂的三键式分解为沿二维表面较简单的碎片的分解。这项研究针对了低维拓扑和结理论中的一些基本问题。它还对其他科学研究的领域有潜在的影响,例如DNA的拓扑结构。在这个项目中,PI将研究三个manifolds的拓扑。该项目有三个主要部分。第一部分是探索一种证明Berge猜想的新方法。 BERGE的猜想可以分为两半:上半场是证明Berge的猜想,隧道第一,下半部分是表明,如果三个球形中的非平凡结会承认镜头空间Dehn手术,那么这个结必须是隧道第一。 PI和他的合作者在上半场进行了深入研究。同样的方法可能会导致Berge猜想的后半部分证明。该研究的第二部分是研究有关Heegaard属和学位图的长期猜想。 PI将使用特殊类型的手术研究这种猜想。这项研究的最后一部分的目的是研究有关Heegaard分裂和曲线复合体的三个manifold拓扑结构的几个基本问题。 PI计划开发新工具并使用他以前的工作以实现这些目标的技术。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Li其他文献
Longitudinal momentum of the electron at the tunneling exit
电子在隧道出口处的纵向动量
- DOI:
10.1103/physreva.98.053435 - 发表时间:
2018-05 - 期刊:
- 影响因子:0
- 作者:
Ruihua Xu;Tao Li;Xu Wang - 通讯作者:
Xu Wang
Small 3-manifolds with large Heegaard distance
- DOI:
10.1017/s0305004113000352 - 发表时间:
2012-11 - 期刊:
- 影响因子:0.8
- 作者:
Tao Li - 通讯作者:
Tao Li
Agent-based power quality monitoring virtual device: Agent-based power quality monitoring virtual device
- DOI:
10.3724/sp.j.1087.2008.00254 - 发表时间:
2008-07 - 期刊:
- 影响因子:0
- 作者:
Tao Li - 通讯作者:
Tao Li
Magnetic resonance neurography in the management of trigeminal neuralgia: a cohort study of 55 patients.
磁共振神经成像治疗三叉神经痛:一项 55 名患者的队列研究。
- DOI:
10.1016/j.oooo.2021.03.003 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Chuan Zhang;R. Xiao;Bing Li;S. Das;C. Zeng;Tao Li;Hanfeng Yang - 通讯作者:
Hanfeng Yang
Association between obstructive sleep apnea syndrome and nocturia: a meta-analysis
阻塞性睡眠呼吸暂停综合征与夜尿症之间的关联:荟萃分析
- DOI:
10.1007/s11325-019-01981-6 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Jiatong Zhou;Shuai Xia;Tao Li;Ranlu Liu - 通讯作者:
Ranlu Liu
Tao Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Li', 18)}}的其他基金
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2422863 - 财政年份:2024
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
CRII: SaTC: Securing Smart Devices with AI-Powered mmWave Radar in New-Generation Wireless Networks
CRII:SaTC:在新一代无线网络中使用人工智能驱动的毫米波雷达保护智能设备
- 批准号:
2245760 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
- 批准号:
2328828 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323117 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: Rational design of Ni/Ga intermetallic compounds for efficient light alkanes conversion through ammonia reforming
合作研究:合理设计Ni/Ga金属间化合物,通过氨重整实现轻质烷烃的高效转化
- 批准号:
2210868 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Reversible Formation of Sodium Hydrosulfide in Hybrid Electrolytes for High-Energy Density Storage
合作研究:了解用于高能量密度存储的混合电解质中硫氢化钠的可逆形成
- 批准号:
2208972 - 财政年份:2022
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: Characterization of Transport Properties and Microstructures of Battery Electrolytes via In Situ Spectroscopy
合作研究:通过原位光谱表征电池电解质的传输特性和微观结构
- 批准号:
2120559 - 财政年份:2021
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
Collaborative Research: Design of a Novel Photo-Thermo-Catalyst for Enhanced Activity and Stability of Dry Reforming of Methane
合作研究:设计新型光热催化剂以增强甲烷干重整的活性和稳定性
- 批准号:
1924574 - 财政年份:2019
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
SHF: Medium: Collaborative Research: Enhancing Mobile VR/AR User Experience: An Integrated Architecture-System Approach
SHF:媒介:协作研究:增强移动 VR/AR 用户体验:集成架构系统方法
- 批准号:
1900713 - 财政年份:2019
- 资助金额:
$ 25.06万 - 项目类别:
Continuing Grant
EAGER: Improving Lifetime and Data Reconstruction Time of Flash-Based RAID by Orchestrating Control between RAID and SSD Controllers
EAGER:通过协调 RAID 和 SSD 控制器之间的控制来提高基于闪存的 RAID 的使用寿命和数据重建时间
- 批准号:
1822459 - 财政年份:2018
- 资助金额:
$ 25.06万 - 项目类别:
Standard Grant
相似国自然基金
大气介质中光的自旋-轨道角动量耦合及其对拓扑荷分裂的作用机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气介质中光的自旋-轨道角动量耦合及其对拓扑荷分裂的作用机理研究
- 批准号:62201613
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于脑影像连接组拓扑信息提取的精神分裂症阴性症状机制研究
- 批准号:62003058
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
酿酒酵母拓扑异构酶II调控减数分裂交叉干涉的分子机制
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
水稻减数分裂同源重组起始因子MRIF1的功能研究
- 批准号:31900391
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
- 批准号:
23K03042 - 财政年份:2023
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Branched covers and topology of open algebraic surfaces
开代数曲面的分支覆盖和拓扑
- 批准号:
22540052 - 财政年份:2010
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on limit theorems for fuzzy set-valued random variables
模糊集值随机变量极限定理研究
- 批准号:
17540123 - 财政年份:2005
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of spaces of conjugation-equivariant holomorphic maps
共轭等变全纯映射空间的拓扑
- 批准号:
15540087 - 财政年份:2003
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An essay to introduce the drive (=instinct)-theory and the secend topology of Freud into the Kafka-study
一篇将弗洛伊德的内驱力(=本能)理论和第二拓扑引入卡夫卡研究的文章
- 批准号:
13610627 - 财政年份:2001
- 资助金额:
$ 25.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)