Expanding the MOF Toolkit to Access New Solid-State Functionality: Porous Materials based on Phosphines, Arsines and Chalcogenides

扩展 MOF 工具包以获得新的固态功能:基于膦、胂和硫属化物的多孔材料

基本信息

  • 批准号:
    1905701
  • 负责人:
  • 金额:
    $ 48.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Non-Technical SummaryThis research program, which is supported by the Solid State and Materials Chemistry program at NSF, involves the preparation and studies of new porous materials, whose unique properties provide fundamental advances for our future energy needs. Porous materials are critical in many large-scale industrial applications, ranging from water purification to the separation of the components of air, and from the capture of toxic chemicals to the production of fuels. However, to make existing processes more efficient and environmentally-friendly, it is essential to improve the properties of materials that perform these functions. The Humphrey group at the University of Texas Austin is working to design and synthesize new porous materials that can incorporate a wide range of well-defined metal species inside their pores. At present, chemically reactive metals cannot be easily or systematically incorporated into most porous materials. Providing a general solution to this problem leads to materials that can capture certain valuable chemical species with greater selectivity and higher capacity. The research team comprised of the PI, graduate students and undergraduate researchers works together to prepare model materials, which are studied using state-of-the-art characterization tools to obtain fundamental information about their properties. Throughout this process, the research team collaborates with theoretical chemists and scientists at beamline facilities to gain a deeper understanding of how structure can affect function. This project integrates an innovative undergraduate educational program, called the Austin-International Framework (AIF). The AIF provides a fully immersive, scholarship-supported international exchange experience to UT Austin undergraduate scientists; students are given the opportunity to broaden their horizons by witnessing first-hand the global nature of science via a semester of study and research in porous materials development at one of several overseas universities of international acclaim. Technical SummaryThe scientific objective of this project, which is supported by the Solid State and Materials Chemistry program at NSF, is to prepare new metal-organic framework (MOF) materials based on unexplored classes of ligands, and to gain an in-depth understanding of their solid-state properties. The field of MOF research continues to expand at an increasing rate, as new potential applications of this novel class of porous materials are discovered. The potential boundaries of MOF chemical complexity remain unknown. However, advances in this regard are slow, restricted by the reliance of MOF discovery using chemically similar organic components. The Humphrey group significantly expands the MOF 'toolkit' by showing that phosphine, arsine and chalcogenide ligands can impart genuinely new solid-state functionalities. The resulting MOF micropores are decorated with structurally well-defined Lewis bases, which can be exploited as post-synthetic attachment points for low-valent, low-coordinate metal species that impart advanced solid-state functionalities (i.e., small molecule chemisorption, chemical bond activation). In essence, the target MOFs are crystalline, atomically-precise solid-state ligands. This is a challenging project, but the resulting materials provide new avenues to systematically incorporate a broad range of metal species of industrial relevance into uniquely confined micro-pore environments. From a fundamental perspective, these materials advance the frontiers of chemical reactivity in MOFs and provide ideal models on which to perform detailed characterization studies pertaining to stronger gas adsorption processes. From a technological perspective, new materials that enable selective adsorption and activation of gases are important for future applications in atmospheric remediation and the production of renewable fuels. In addition to providing research opportunities for undergraduate and graduate students at UT Austin, this project also integrates an innovative undergraduate educational program, called the Austin-International Framework (AIF).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF的固态和材料化学计划支持的非技术摘要研究计划涉及新的多孔材料的准备和研究,其独特的特性为我们未来的能源需求提供了基本进步。在许多大规模的工业应用中,多孔材料至关重要,从水纯化到空气组成部分的分离,从捕获有毒化学物质到燃料的生产。但是,要使现有过程更加高效,更环保,必须提高执行这些功能的材料的特性。德克萨斯大学奥斯汀分校的汉弗莱集团正在努力设计和合成新的多孔材料,这些材料可以在毛孔中融合各种定义明确的金属物种。目前,化学反应性金属不能轻易或系统地掺入大多数多孔材料中。为此问题提供一般解决方案会导致材料,这些材料可以捕获某些具有更高选择性和更高容量的有价值的化学物种。由PI,研究生和本科研究人员组成的研究团队共同努力准备模型材料,这些材料是使用最先进的特征工具对其进行研究的,以获取有关其特性的基本信息。在整个过程中,研究团队与梁线设施的理论化学家和科学家合作,以更深入地了解结构如何影响功能。该项目集成了一个创新的本科教育计划,称为Austin-International框架(AIF)。 AIF为UT奥斯汀的本科科学家提供了完全沉浸式的奖学金支持的国际交流经验;通过在国际众多海外大学之一的多孔材料开发研究和研究中,通过亲眼目睹科学的全球性质,通过亲眼目睹科学的全球性质来扩大视野的机会。技术总结该项目的科学目标得到了NSF的固态和材料化学计划的支持,该计划是为基于未探索的配体类别的新金属有机框架(MOF)材料准备的,以便对其固态特性进行深入了解。由于发现了这种新型多孔材料的新潜在应用,因此MOF研究领域继续以越来越多的速度扩展。 MOF化学复杂性的潜在边界仍然未知。但是,这方面的进步很慢,受到使用化学相似的有机成分发现MOF发现的依赖。 Humphrey组通过表明磷酸,砷和葡萄干蛋白的配体可以赋予真正新的固态功能,从而显着扩展了MOF“工具包”。所得的MOF微孔装饰有结构良好的刘易斯碱基,可以将其作为低价值的低坐标金属物种(即赋予先进的固体态功能(即小分子化学化学),化学键激活)的低价值低坐标金属物种的合成后附着点。 从本质上讲,靶MOF是结晶,原子固态配体。这是一个具有挑战性的项目,但是所产生的材料为系统地将各种工业相关性的金属种类纳入独特的密闭微孔环境中提供了新的途径。从基本的角度来看,这些材料推进了MOF中化学反应性的前沿,并提供了理想的模型,以进行详细的表征研究,该研究与更强的气体吸附过程有关。从技术的角度来看,使气体的选择性吸附和激活能够在大气补救和可再生燃料的生产中应用至关重要。除了为UT Austin的本科和研究生提供研究机会外,该项目还整合了一个创新的本科教育计划,称为Austin-International-International Framework(AIF)。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力功能和广泛影响来评估CRETERIA的评估。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Valent Metal Ions as MOF Pillars: A New Route Toward Stable and Multifunctional MOFs
  • DOI:
    10.1021/jacs.1c05564
  • 发表时间:
    2021-08-19
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Sikma, R. Eric;Katyal, Naman;Humphrey, Simon M.
  • 通讯作者:
    Humphrey, Simon M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Humphrey其他文献

Simon Humphrey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Humphrey', 18)}}的其他基金

CAS: Fundamental Experimental-Theoretical Investigations of New Metal Alloy Nanocatalysts for Natural Gas Repurposing
CAS:用于天然气再利用的新型金属合金纳米催化剂的基础实验理论研究
  • 批准号:
    2109120
  • 财政年份:
    2022
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
Predictive Design and Scalable Synthesis of New Multimetallic Nanoparticles with Enhanced Surface Reactivity
具有增强表面反应性的新型多金属纳米颗粒的预测设计和可扩展合成
  • 批准号:
    1807847
  • 财政年份:
    2018
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant
Unconventional Noble Metal Nanoparticles with Enhanced Catalytic Properties: A Combined Experimental and Theoretical Study
具有增强催化性能的非常规贵金属纳米颗粒:实验与理论相结合的研究
  • 批准号:
    1505135
  • 财政年份:
    2015
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
Exploring the Solid-State Properties of Phosphine Coordination Materials
探索磷化氢配位材料的固态性质
  • 批准号:
    1506694
  • 财政年份:
    2015
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Standard Grant

相似国自然基金

用于抗体富集纯化的功能化多级孔MOF材料设计制备
  • 批准号:
    22305017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可调谐MOF-纳米线复合网络微结构增强的双频谱联用肺癌检测研究
  • 批准号:
    12374342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
  • 批准号:
    82300739
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MOF基异质分级微纳结构的集成组装、界面调控与电化学传感性能
  • 批准号:
    22371165
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
垂直逆流气相色谱法研究乙烯/乙烷在MOF材料中的吸附动力学
  • 批准号:
    22308237
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
  • 批准号:
    2349338
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Continuing Grant
MOF鋳型重合によるドナー-アクセプター交互ナノアレイの構築
通过 MOF 模板聚合构建交替供体-受体纳米阵列
  • 批准号:
    24KJ0710
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
MOF結晶1粒子内で起こる反応過程の時空間イメージング
单个 MOF 晶体颗粒内发生的反应过程的时空成像
  • 批准号:
    23K26668
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MOFカラムクロマトグラフィーによる中・高分子の革新的分離技術の創出
使用 MOF 柱色谱法创建中高分子创新分离技术
  • 批准号:
    24K01535
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
溶液中のMOF結晶内における分子秩序化過程の微視的原理探究と結晶スポンジ法への応用
溶液中MOF晶体分子有序过程微观原理探索及其在晶体海绵法中的应用
  • 批准号:
    24K17648
  • 财政年份:
    2024
  • 资助金额:
    $ 48.72万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了