Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films

合作研究:转移印刷单晶硅纳米网薄膜

基本信息

  • 批准号:
    1905575
  • 负责人:
  • 金额:
    $ 27.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Non-technical description: Stretchable electronics have emerged as promising platforms for many important areas such as bio-mimetics, health monitoring, biomedical therapeutics, and soft robotics. This project investigates a set of foundational materials science problems to, for the first time, establish a new electronic materials platform - Si nanomeshes - for next-generation stretchable electronics. The transformative aspect of this project arises from the broad utility of the resulting design and engineering knowledge for nanomesh electronic materials, having profound impacts to not only fundamental materials science but also a broad range of applications in human-electronic interfaces and smart robots. The collaborative team also utilizes this project to integrate creative educational activities with cutting-edge research at multiple levels through: (1) engaging K-12 students via summer research and exhibiting at Oklahoma WONDERtorium Children's museum; (2) actively attracting undergraduate students for early research; and (3) the continuous curriculum development at both Northeastern University and Oklahoma State University to expand capacity in the soft electronic materials field. Technical description: Stretchable electronics research has long been facing the dichotomy between device performance and density. In the past decade, there has been significant progress in realizing stretchable semiconductors, however, existing approaches are still incomplete when high-density, high-performance stretchable electronics are needed. On the basis of strong preliminary results from the research team, the principal investigators hypothesize that with tailored nanomesh geometries and engineered sidewall surface states, Si nanomeshes can achieve simultaneously large stretchability, high mobility and high reliability that are needed for high-density stretchable electronics. Through both theoretical and experimental investigations, this project aims to investigate and establish the interrelationship of structure-processing-properties of Si nanomeshes for stretchable devices. Key structure variables to investigate include in-plane nanomesh pattern, out-of-plane materials stacking and sidewall surface states, while main properties targeted are mechanical flexibility, stretchability, and carrier transport mobilities. The project then achieves Si nanomeshes with desired mesh patterns through viable top-down approaches, prints and fabricates sidewall engineered Si-nanomesh based stretchable devices. A set of combined optical and electrical characterizations systematically investigate the properties of sidewall-engineered Si nanomeshes under stretching and scaling. Besides potential applications for high-performance stretchable electronics, this semiconductor nanomesh concept provides a new platform for materials engineering, and is expected to yield a new family of stretchable materials having tunable electronic and optoelectronic properties with customized nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:可拉伸电子产品已成为许多重要领域(例如仿生学、健康监测、生物医学治疗和软机器人)的有前途的平台。该项目研究了一系列基础材料科学问题,首次为下一代可拉伸电子产品建立了一个新的电子材料平台——硅纳米网。该项目的变革性方面源于纳米网电子材料的设计和工程知识的广泛应用,不仅对基础材料科学产生深远影响,而且对人机界面和智能机器人的广泛应用产生深远影响。合作团队还利用该项目,通过以下方式将创意教育活动与多个层面的前沿研究相结合:(1)通过暑期研究和在俄克拉荷马州 WONDERtorium 儿童博物馆的展览吸引 K-12 学生; (2)积极吸引本科生进行早期研究; (3)东北大学和俄克拉荷马州立大学不断开发课程,扩大软电子材料领域的能力。技术描述:可拉伸电子学研究长期以来一直面临着器件性能和密度之间的二分法。在过去的十年中,在实现可拉伸半导体方面取得了重大进展,然而,当需要高密度、高性能可拉伸电子器件时,现有方法仍然不完善。基于研究团队强有力的初步结果,主要研究人员假设,通过定制的纳米网格几何形状和工程侧壁表面状态,硅纳米网格可以同时实现高密度可拉伸电子产品所需的大拉伸性、高迁移率和高可靠性。通过理论和实验研究,该项目旨在研究和建立可拉伸器件的硅纳米网结构-加工-性能之间的相互关系。要研究的关键结构变量包括面内纳米网格图案、面外材料堆叠和侧壁表面状态,而主要目标特性是机械灵活性、拉伸性和载流子传输迁移率。然后,该项目通过可行的自上而下的方法实现具有所需网格图案的硅纳米网,打印并制造基于侧壁工程硅纳米网的可拉伸装置。一组组合的光学和电学表征系统地研究了侧壁工程硅纳米网在拉伸和缩放下的性能。除了高性能可拉伸电子产品的潜在应用之外,这种半导体纳米网概念还为材料工程提供了一个新平台,并有望产生一系列新的可拉伸材料,这些材料具有可调节的电子和光电特性以及定制的纳米结构。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanomeshed Si nanomembranes
  • DOI:
    10.1038/s41528-019-0053-5
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
  • 通讯作者:
    Xun Han;Kyung Jin Seo;Yi Qiang;Zeping Li;S. Vinnikova;Yiding Zhong;Xuanyi Zhao;Peijie Hao;Shuodao Wang;Hui Fang
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
  • DOI:
    10.1115/1.4047777
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Vinnikova;H. Fang;Shuodao Wang
  • 通讯作者:
    S. Vinnikova;H. Fang;Shuodao Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Fang其他文献

MT inversion for anisotropic conductivities in layered media
层状介质中各向异性电导率的 MT 反演
  • DOI:
    10.1190/1.3659127
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiong Li;Yaoguo Li;Xiaohong Meng;Guangpu Huo;Xiangyun Hu;Hui Fang;Yifan Huang
  • 通讯作者:
    Yifan Huang
Efficient On-Device Incremental Learning by Weight Freezing
通过体重冻结实现高效的设备端增量学习
Ubiquitination of NLRP3 by gp78/Insig-1 restrains NLRP3 inflammasome activation
gp78/Insig-1 泛素化 NLRP3 可抑制 NLRP3 炎症小体激活
  • DOI:
    10.1038/s41418-022-00947-8
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Ting Xu;Weiwei Yu;Hui Fang;Zhen Wang;Zhexu Chi;Xingchen Guo;Danlu Jiang;Kailian Zhang;Sheng Chen;Mobai Li;Yuxian Guo;Jian Zhang;Dehang Yang;Qianzhou Yu;Di Wang;Xue Zhang
  • 通讯作者:
    Xue Zhang
CXCL12/CXCR4 axis drives the chemotaxis and differentiation of B cells in bullous pemphigoid.
CXCL12/CXCR4轴驱动大疱性类天疱疮中B细胞的趋化和分化。
  • DOI:
    10.1016/j.jid.2022.08.041
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Fang;Ke Xue;Tianyu Cao;Qingyang Li;Erle Dang;Yanghe Liu;Jieyu Zhang;Pei Qiao;Jiaoling Chen;Jingyi Ma;Shengxian Shen;Bingyu Pang;Yaxing Bai;Hongjiang Qiao;Shuai Shao;Gang Wang
  • 通讯作者:
    Gang Wang
A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex
半胱氨酰-tRNA合成酶突变导致帕金森病/脊髓小脑共济失调复合体的新型常染色体显性遗传
  • DOI:
    10.2139/ssrn.3806674
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenxin Zhang;Han;Hui Fang;Hong;H. You;Xiaoyan Huang;Chang;Han Wang;B. Hou;Xiu;F. Feng;Huanming Yang;Jian Wang;Rui Wu;Jianguo Zhang;Jiangong Zhou
  • 通讯作者:
    Jiangong Zhou

Hui Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Fang', 18)}}的其他基金

CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    2140392
  • 财政年份:
    2021
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
  • 批准号:
    2146636
  • 财政年份:
    2021
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    1847215
  • 财政年份:
    2019
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
III: Small: Information Chain Support for Disaster Mitigation, Preparedness, Response and Recovery
III:小型:减灾、备灾、响应和恢复的信息链支持
  • 批准号:
    1423002
  • 财政年份:
    2014
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant

相似国自然基金

EGLN3羟化酶通过调控巨噬细胞重编程促进肺癌细胞EMT及转移的机制研究
  • 批准号:
    82373030
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
胰腺癌-肝脏双重类器官芯片的构建及其在胰腺癌肝转移机制研究中的应用
  • 批准号:
    82302351
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
N6-甲基腺苷(m6A)修饰的LINC00673通过调节SRSF3稳定性促进乳腺癌转移和化疗耐药的机制研究
  • 批准号:
    82303500
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SLC2A1/RBM14-RBM4轴调控SPP1+巨噬细胞重塑转移性肝癌免疫微环境的机制研究
  • 批准号:
    82372872
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
应用CRISPR/Cas13a基因编辑系统针对BRAFV600E阳性黑色素瘤脑转移瘤精准诊疗技术的研究
  • 批准号:
    82303971
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2232875
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219795
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了