Shape-Morphing Living Composites
可变形的活性复合材料
基本信息
- 批准号:1905511
- 负责人:
- 金额:$ 46.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Designing Living-Synthetic, Shape-Morphing Composites Non-technical abstractThis award by the Biomaterials Program in the Division of Materials Research, to the University of Texas at Dallas, seeks to design and characterize shape-changing composites comprised of both living cells and non-living materials. Single-celled organisms sense and respond to very small changes in their surroundings, but it is difficult to use these organisms as materials in engineering applications. By comparison, most synthetic materials do not respond to their environment or only respond to very large changes, but the properties of these materials can be readily controlled. This research effort will focus on the synthesis, 3D printing, and characterization of hybrid materials that combine the advantages of both living and non-living components. Specifically, Baker's yeast will be embedded in a hydrogel, a soft material largely comprised of water. The growth of these cells causes the entire material to change in shape. By controlling the genes of the yeast, materials can be built to change shape and produce specific biomolecules after detecting specific, small changes in the environment. These materials may be used for simple sensors capable of detecting and reporting changes in bodily fluids or in the environment. The behavior of these new materials could also enable drug-delivery devices that sense disease states in the gut and respond by delivering treatment to the area. This research will also create opportunities for K-12 students to learn about topics in both biology and materials science. Technical abstractThe objective of the proposed work is to harness the controlled proliferation of microorganisms to create synthetic-living hydrogels capable of programmable shape change. Specifically, Saccharomyces cerevisiae will be embedded in acrylamide hydrogels, and the proliferation of these cells will induce shape change in the composite. The primary advantage of this approach, as compared to engineering purely synthetic, responsive materials, is that genetic engineering and material formulation can be used to program the macroscopic composite response to predetermined and incredibly specific stimuli. This work consists of four research tasks: 1) Quantify local and global mechanical deformation during proliferation-induced shape change of the composite and measure the effects of hydrogel mechanical properties on growth, 2) 3D print synthetic-living composites and measure the effects of geometry and porosity on composite growth, 3) Elucidate the fundamental relationship between dose and response and elucidate the specificity of living composites to metabolites, proteins, and light as stimuli that evoke shape change, and 4) Design hydrogel matrices that respond controllably to enzymes produced by the yeast, enabling feedback control of shape change. The effect of metabolites, stimuli, and proteins produced by the yeast on growth throughout the composite will be measured, thus providing understanding of the fundamental relationships that govern living materials. This work will address a critical need for materials that sense highly specific biochemical or weak physical cues and then respond in a controlled manner. These materials will impact areas of critical national need, including drug-delivery strategies that could be used in the gut and simple biochemical sensors. Research activities will be coupled to outreach efforts for K-12 students on topics including genetics, hydrogels, and yeast. These efforts will be aimed at both increasing participation of underrepresented groups in science careers and dissemination of research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
设计生物材料研究部的生物合成,形状复合材料非技术摘要奖,该奖项是材料研究部的,德克萨斯大学达拉斯分校,旨在设计和表征由活细胞和非生存材料组成的形状变化的复合材料。单细胞生物有意义并应对周围环境的很小变化,但是很难将这些生物作为工程应用中的材料。相比之下,大多数合成材料对它们的环境没有响应,或者仅响应很大的变化,但是这些材料的特性很容易受到控制。这项研究工作将集中于结合生物和非生命组件优势的混合材料的合成,3D打印和表征。具体而言,贝克的酵母将嵌入水凝胶中,这是一种大部分由水组成的软材料。这些细胞的生长导致整个材料的形状变化。通过控制酵母的基因,可以在检测到环境的特定小变化后建造材料来改变形状并产生特定的生物分子。这些材料可用于能够检测和报告体液或环境中的变化的简单传感器。这些新材料的行为还可以使吸毒装置能够感知肠道中的疾病状态,并通过向该地区提供治疗来做出反应。这项研究还将为K-12学生创造机会,了解生物学和材料科学领域的主题。技术摘要拟议的工作的目的是利用微生物的受控增殖,以创建能够可编程形状变化的合成生命水凝胶。具体而言,酿酒酵母将嵌入丙烯酰胺水凝胶中,这些细胞的增殖将诱导复合材料中的形状变化。与工程纯粹的响应材料相比,这种方法的主要优点是,遗传工程和材料配方可用于对宏观复合响应编程为预定的和令人难以置信的特定刺激。这项工作由四个研究任务组成:1)在增殖引起的复合材料的形状变化过程中量化本地和全球机械变形,并测量水凝胶机械性能对生长的影响,2)3D打印合成生存的复合材料,并衡量几何和孔隙度和孔隙率的影响,孔隙度和孔隙量的效果作为唤起形状变化的刺激,以及4)设计水凝胶矩阵,这些水凝胶矩阵对酵母产生的酶有反应,从而可以对形状变化的反馈控制。将测量酵母在整个复合材料中生长产生的代谢产物,刺激和蛋白质的影响,从而提供对控制生物的基本关系的理解。这项工作将解决对高度特定的生化或弱物理线索,然后以受控方式做出反应的材料的关键需求。这些材料将影响国民需求的关键领域,包括可以在肠道和简单的生化传感器中使用的药物交付策略。 研究活动将与K-12学生有关遗传学,水凝胶和酵母等主题的宣传工作。这些努力将旨在增加代表性不足的群体在科学职业中的参与和研究的传播。该奖项反映了NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shape-morphing living composites
- DOI:10.1126/sciadv.aax8582
- 发表时间:2020-01
- 期刊:
- 影响因子:13.6
- 作者:Laura K. Rivera‐Tarazona;Vandita D Bhat;Hyun Kim;Z. Campbell;T. Ware
- 通讯作者:Laura K. Rivera‐Tarazona;Vandita D Bhat;Hyun Kim;Z. Campbell;T. Ware
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Taylor Ware其他文献
Printable ultra-flexible temperature sensor for thermal mapping of bio-tissue
用于生物组织热成像的可打印超柔性温度传感器
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Tomoyuki Yokota;Jonathan Reeder;Yusuke Inoue;Yuki Terakawa;Taylor Ware;Walter Voit;Masaki Sekino and Takao Someya - 通讯作者:
Masaki Sekino and Takao Someya
Taylor Ware的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Taylor Ware', 18)}}的其他基金
Collaborative Research: Sub-Voxel Molecular Patterning of Actuators and Photonic Structures in 3-Dimensional Free-Forms
合作研究:3 维自由形式的执行器和光子结构的亚体素分子图案
- 批准号:
2147830 - 财政年份:2022
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
CAREER: Designing Microscale, Shape-Morphing Liquid Crystal Elastomers as Tissue Adhesives
职业:设计微型形状变形液晶弹性体作为组织粘合剂
- 批准号:
2041671 - 财政年份:2020
- 资助金额:
$ 46.22万 - 项目类别:
Continuing Grant
CAREER: Designing Microscale, Shape-Morphing Liquid Crystal Elastomers as Tissue Adhesives
职业:设计微型形状变形液晶弹性体作为组织粘合剂
- 批准号:
1752846 - 财政年份:2018
- 资助金额:
$ 46.22万 - 项目类别:
Continuing Grant
Collaborative Research: Passive RFID Real-Time Temperature-Sensing Based on Programmable Liquid Crystal Elastomers
合作研究:基于可编程液晶弹性体的无源RFID实时温度传感
- 批准号:
1711383 - 财政年份:2017
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
Collaborative Research: Microfabrication and Self-Assembly of Shape-Changing Hydrogels with Chromonic Liquid Crystalline Order
合作研究:彩色液晶有序变形水凝胶的微加工和自组装
- 批准号:
1663367 - 财政年份:2017
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
相似国自然基金
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
- 批准号:52365047
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
旋转剪切作用下中煤级烟煤变形产气机理研究
- 批准号:42302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脱氧胆酸通过c-Abl-YAP通路调控肠粘膜屏障功能对肝脂肪变形成影响
- 批准号:82370558
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
长时连续复杂变形条件下镁合金动态再结晶行为与调控机理
- 批准号:52304391
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于变形损伤控制机制的GH4169及焊接接头的蠕变-疲劳-临氢环境下寿命预测研究
- 批准号:52375371
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Molecular Control of Thermomechanics and Shape-Morphing of Dynamic Covalent Polymer Networks
热机械的分子控制和动态共价聚合物网络的形状变形
- 批准号:
2406256 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
- 批准号:
2340266 - 财政年份:2024
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Standard Grant
Design, Control and Flight Demonstration of Bio-Mimetic Surface Pressure Sensor Array-Equipped Morphing Aircraft
仿生表面压力传感器阵列变形飞机设计、控制与飞行演示
- 批准号:
23K17333 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Optimal design of morphing wing structure with static aerodynamic deformation considering aerodynamic variation
考虑气动变化的静态气动变形变形机翼结构优化设计
- 批准号:
23KJ1842 - 财政年份:2023
- 资助金额:
$ 46.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows