Collaborative Research: Atomic-Scale Hybrids, Tuning the IR Dielectric Function through Superlattice Design
合作研究:原子级混合体,通过超晶格设计调节红外介电函数
基本信息
- 批准号:1905295
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: The infrared spectral range offers a wealth of technological opportunities, including thermal imaging, ability to see through dust or clouds, chemical identification for medical diagnostics and hazard identification, to name a few. Unlike the visible spectral range where materials such as glass provide exceptionally high performance at extremely low cost, the infrared optical components are typically sensitive to water, opaque in the visible, expensive and/or brittle. Thus, identifying alternative materials or material platforms that can provide the basis of next generation infrared optics and light sources is highly desired. Within the infrared, many polar materials, such as silicon carbide, exhibit crystal vibrations that can be excited using light. This provides opportunities to compress long-wavelength infrared light to nanometer scale lengths, offering the potential to significantly reduce the size of infrared optics. However, these crystal vibrations are material specific and thus, finding the right material in the desired infrared frequency range is challenging. This project investigates novel hybrid materials composed of altering stacking thin layers with potential to modify their crystal vibrations in an effort to change its corresponding infrared properties. The collaborative research seeks to understand how these vibrations are influenced when the layer thickness is reduced to atom-scale thicknesses, and involves a multidisciplinary team of a material scientist, physicist and mechanical engineer to aid in realizing designer infrared materials deemed 'crystalline hybrids'. The project trains graduate and undergraduate students in semiconductor growth, infrared spectroscopy and characterization and theoretical descriptions of complex solids.Technical Description: This project seeks to develop a new class of materials called Crystalline Hybrids (XHs) that offers the promise for realizing user-defined infrared (IR) optical materials. These novel materials can serve as the basis of next generation IR optical components, sources and detector elements. A primary research goal of this collaborative program is to discover theory-guided principles for the rational design of XHs to meet a given application space. The XH approach seeks to modify polar optic phonons within atomically thin layers comprising a multilayered superlattice. Within these structures, the layer thicknesses will be less than the phonon mean-free-path, resulting in quantum confinement and frequency tuning of the vibrational state. Furthermore, the modified bonding at the multiple interfaces within the superlattice structures introduce new interfacial phonons. These modified phonon properties directly influence the infrared response of the material, as it is optic phonons that dominate the IR behavior of polar crystals. The research is focused on superlattices comprised of the near-lattice matched III-V semiconductors InAs, GaSb and AlSb, which eliminate external effects like strain and allow well-controlled experiments to be performed. The project involves a diverse group of graduate and undergraduate students who are trained in the basics of semiconductor growth, IR spectroscopy, theory and first-principles calculations of nanomaterials, enabling them to work at the frontiers of nanophotonics research. The collaboration between material scientists, physicists and engineers broadens the impact of this work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:红外光谱范围提供了丰富的技术机会,包括热成像、透视灰尘或云层的能力、用于医疗诊断的化学识别和危险识别等。与可见光谱范围内的玻璃等材料以极低的成本提供极高的性能不同,红外光学元件通常对水敏感、在可见光范围内不透明、昂贵且/或易碎。因此,非常需要确定可以为下一代红外光学和光源提供基础的替代材料或材料平台。在红外线范围内,许多极性材料(例如碳化硅)表现出可以用光激发的晶体振动。这提供了将长波长红外光压缩到纳米级长度的机会,从而有可能显着减小红外光学器件的尺寸。然而,这些晶体振动是特定于材料的,因此,在所需的红外频率范围内找到合适的材料具有挑战性。该项目研究由改变堆叠薄层组成的新型混合材料,有可能改变其晶体振动,以改变其相应的红外特性。这项合作研究旨在了解当层厚度减小到原子级厚度时这些振动是如何受到影响的,并涉及由材料科学家、物理学家和机械工程师组成的多学科团队,以帮助设计者实现被视为“晶体混合体”的红外材料。该项目对研究生和本科生进行半导体生长、红外光谱和复杂固体表征和理论描述方面的培训。技术描述:该项目旨在开发一种称为晶体混合材料 (XHs) 的新型材料,该材料有望实现用户定义的材料红外(IR)光学材料。这些新型材料可以作为下一代红外光学元件、光源和探测器元件的基础。该合作项目的主要研究目标是发现合理设计 XH 的理论指导原则,以满足给定的应用空间。 XH 方法旨在修改包含多层超晶格的原子薄层内的极性光学声子。在这些结构中,层厚度将小于声子平均自由程,从而导致量子限制和振动状态的频率调谐。此外,超晶格结构内多个界面处的改进的键合引入了新的界面声子。这些改变的声子特性直接影响材料的红外响应,因为光学声子主导了极性晶体的红外行为。该研究的重点是由近晶格匹配的 III-V 族半导体 InAs、GaSb 和 AlSb 组成的超晶格,它消除了应变等外部影响,并允许进行良好控制的实验。该项目涉及不同的研究生和本科生群体,他们接受了半导体生长、红外光谱、纳米材料理论和第一原理计算基础知识的培训,使他们能够在纳米光子学研究的前沿工作。材料科学家、物理学家和工程师之间的合作扩大了这项工作的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prineha Narang其他文献
Prineha Narang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prineha Narang', 18)}}的其他基金
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2331441 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
2246394 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2247007 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
U.S.-Ireland R&D Partnership: Collaborative Research: CNS Core: Medium: A unified framework for the emulation of classical and quantum physical layer networks
美国-爱尔兰 R
- 批准号:
2106887 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
RAISE-QAC-QSA: Open Quantum Systems on Noisy Intermediate-Scale Quantum Devices
RAISE-QAC-QSA:噪声中等规模量子设备上的开放量子系统
- 批准号:
2037783 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
CAREER: First Principles Design of Error-Corrected Solid-State Quantum Repeaters
职业:纠错固态量子中继器的第一原理设计
- 批准号:
1944085 - 财政年份:2020
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
单原子纳米酶的第二配位球调制及其抗肿瘤性能研究
- 批准号:52302342
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡金属单原子/亚纳米团簇复合催化剂的构筑及其锂硫电池性能研究
- 批准号:52302261
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于配位构型调控的碳负载单原子催化剂开发及室温钠硫电池应用研究
- 批准号:52372218
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
层状粘土限域单原子“金属-氮/氧硅”配位结构调控及其强化过硫酸盐氧化过程研究
- 批准号:22308194
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于芳基重氮盐原子转移策略的自由基环化反应构建复杂多样吡唑化合物新方法研究
- 批准号:22371155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
- 批准号:
2225900 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304854 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304853 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant