SCUID: A Carbon Nanotube Based Sensor for Measurement of Dissolved Gases in Water
SCUID:基于碳纳米管的传感器,用于测量水中溶解气体
基本信息
- 批准号:1841927
- 负责人:
- 金额:$ 89.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims at developing an in-situ oceanographic sensor platform that enables the measurement of dissolved gases of interest in the ocean in order to study the nitrogen cycle in oxygen minimum zones. This type of sensor does not exist to date and is accomplished by marrying two mature systems - a cutting edge technology sensing platform, and a proven submergible housing. Carbon nanotube-based gas sensors are considered cutting edge technology, allowing to detect a wide range of environmental and safety related trace gases at relevant sensitivities. They are low power, and have provided in-situ, real time, automated measurement of chemicals in space, for fire detection, for fuel leak detection, and as health monitoring system. Companies around the world are looking to integrate these gas sensors due to their versatility, sensitivity, and range of measurement. In recent years, start-ups manufacturing these sensors in large numbers have formed in response to the high demand. While it is possible today to measure trace gases such as N2O, NO, and DMS in the atmosphere, the sensors to measure dissolved gases in seawater real time and in situ are limited to only CO2, CH4, and H2S. Several of these climatically relevant gases are known to be produced under low oxygen conditions, such as the oxygen minimum zones in the open ocean, and ?deadzones? in the coastal ocean. Today highly precise measurement of dissolved gases like N2O and NO rely on laboratory-based analyses such as mass spectrometry and gas chromatography. Global warming is the working hypothesis for the observed expansion of open ocean Oxygen Minimum Zones; increased stratification reduces upper ocean ventilation and aeration. Expansion of hypoxia in the coastal zone is linked to eutrophication associated with excess nutrients in river runoff, from sources such as chemical fertilizers applied to farms, fields, and lawns. Marine life becomes highly stressed under hypoxic conditions, and dramatic ecological impacts can occur, including massive kills of fish and shellfish and harmful algae blooms. Longer lasting impacts also occur since juvenile fish are more likely to be affected than mature fish, resulting in detrimental follow-on effects such as economic losses. There is a critical need for a deeper understanding of gas cycling in hypoxic zones. Measurement of climatically relevant trace gases are necessary to quantify ocean sources and sinks, and to understand their impact on global climate change. The oceanographic community needs a new, small, low-power, real time dissolved gas sensor that can be tuned to different gases of interest to allow high spatial resolution sampling for specific gases of interest. A platform independent sensor can be used on floats, gliders, conductivity-temperature-depth sensors, and automated underwater vehicles for open water and coastal surveys of dissolved gases. This will not only expand the dissolved gases that a sensor can detected in situ, but bolster scientific discovery, data, and models in areas such as sea-air exchange, greenhouse gases, and hydrothermal vents. The sensing chip consists of a single wall carbon nanotube gas sensor. It is provided by NASA Ames Research Center and has been used to detect several gases in space and on earth to date. For this research, the sensing chip is trained to detect N2O and NO, two gases that are of great interest to the oceanographic community but have not been possible to detect in situ to date. The sea-worthy, submergible housing (to 2000m) will be provided by Pro-Oceanus, an expert in this field. Detection limits aimed for are 100ppb and 5ppb, for N2O and NO respectively. Laboratory testing of the gas sensor and integrated sensing system will take place at APL/UW. Field tests to Hood Canal WA), and the Gulf of Mexico are planned in year 3 of this proposal. If successful, these tests will yield unparalleled spatial resolution of N2O and NO gas concentrations, and allow us to draw conclusions about air-sea interaction that have not been possible to date.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究旨在开发一个原位海洋传感器平台,能够测量海洋中感兴趣的溶解气体,以研究氧气最低区的氮循环。这种类型的传感器迄今为止还不存在,是通过结合两个成熟的系统来实现的——尖端技术传感平台和经过验证的潜水外壳。基于碳纳米管的气体传感器被认为是尖端技术,能够以相关灵敏度检测各种与环境和安全相关的微量气体。它们功耗低,可对太空中的化学品进行原位、实时、自动测量,用于火灾探测、燃料泄漏探测以及健康监测系统。由于这些气体传感器的多功能性、灵敏度和测量范围,世界各地的公司都在寻求集成它们。近年来,为了满足高需求,大量生产这些传感器的初创企业应运而生。虽然现在可以测量大气中的 N2O、NO 和 DMS 等痕量气体,但实时原位测量海水中溶解气体的传感器仅限于 CO2、CH4 和 H2S。已知其中几种与气候相关的气体是在低氧条件下产生的,例如公海中的氧气最低区和“死区”。在沿海海洋中。如今,对 N2O 和 NO 等溶解气体的高精度测量依赖于基于实验室的分析,例如质谱法和气相色谱法。全球变暖是观察到的公海最低氧气区扩张的有效假设;分层的增加减少了上层海洋的通风和通气。沿海地区缺氧的扩大与富营养化有关,而富营养化是由河流径流中过量的营养物质引起的,这些营养物质的来源包括农场、田地和草坪施用的化肥。在缺氧条件下,海洋生物会受到高度压力,并可能发生严重的生态影响,包括鱼类和贝类的大量死亡以及有害藻类的大量繁殖。由于幼鱼比成鱼更容易受到影响,因此还会发生更持久的影响,从而导致经济损失等不利的后续影响。迫切需要更深入地了解缺氧区的气体循环。测量与气候相关的痕量气体对于量化海洋源和汇并了解其对全球气候变化的影响是必要的。海洋学界需要一种新型、小型、低功耗、实时溶解气体传感器,该传感器可以针对不同的感兴趣气体进行调整,以便对特定感兴趣的气体进行高空间分辨率采样。独立于平台的传感器可用于浮标、滑翔机、电导率-温度深度传感器和自动水下航行器,用于开放水域和沿海溶解气体调查。这不仅将扩大传感器可以在原位检测到的溶解气体,还将支持海气交换、温室气体和热液喷口等领域的科学发现、数据和模型。传感芯片由单壁碳纳米管气体传感器组成。它由美国宇航局艾姆斯研究中心提供,迄今为止已用于检测太空和地球上的多种气体。在这项研究中,传感芯片经过训练可以检测 N2O 和 NO,这两种气体对海洋学界非常感兴趣,但迄今为止还无法进行原位检测。适合航海的潜水外壳(水深2000米)将由该领域的专家Pro-Oceanus提供。 N2O 和 NO 的检测限分别为 100ppb 和 5ppb。气体传感器和集成传感系统的实验室测试将在 APL/UW 进行。计划在本提案的第三年对华盛顿州胡德运河和墨西哥湾进行现场测试。如果成功,这些测试将产生无与伦比的 N2O 和 NO 气体浓度空间分辨率,并使我们能够得出迄今为止无法得出的有关海气相互作用的结论。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anuscheh Nawaz其他文献
Resident AUV Workshop 2018: Applications and a Path Forward
2018 年常驻 AUV 研讨会:应用与前进之路
- DOI:
10.1109/auv.2018.8729720 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:0
- 作者:
D. Manalang;J. Delaney;A. Marburg;Anuscheh Nawaz - 通讯作者:
Anuscheh Nawaz
Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy
使用可调谐二极管激光吸收光谱监测高焓电弧加热等离子体流中的温度
- DOI:
10.2514/6.2013-2761 - 发表时间:
2013-06-24 - 期刊:
- 影响因子:0
- 作者:
MA Martin;Leyen S. Chang;J. Jeffries;R. Hanson;Anuscheh Nawaz;Jaswinder S. Taunk;D. Driver;G. Raiche - 通讯作者:
G. Raiche
MHD flow control for plasma technology applications
用于等离子体技术应用的 MHD 流量控制
- DOI:
10.1016/j.vacuum.2006.01.043 - 发表时间:
2006-09-07 - 期刊:
- 影响因子:4
- 作者:
G. Herdrich;M. Auweter;M. Fertig;Anuscheh Nawaz;D. Petkow - 通讯作者:
D. Petkow
Influence of Electrode Shape on Performance of Pulsed Magnetoplasmadynamic Thruster SIMP-LEX
电极形状对脉冲磁等离子动力推进器SIMP-LEX性能的影响
- DOI:
10.2514/1.35568 - 发表时间:
2009-03-01 - 期刊:
- 影响因子:1.9
- 作者:
T. Schönherr;Anuscheh Nawaz;G. Herdrich;H. Röser;M. Auweter - 通讯作者:
M. Auweter
Assessing Calorimeter Evaluation Methods in Convective Heat Flux Environments
评估对流热通量环境中的量热计评估方法
- DOI:
10.2514/6.2010-4905 - 发表时间:
2010-06-28 - 期刊:
- 影响因子:0
- 作者:
Anuscheh Nawaz;Jose A. Santos - 通讯作者:
Jose A. Santos
Anuscheh Nawaz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anuscheh Nawaz', 18)}}的其他基金
EAGER: Toward Eco-Friendly Oceanography - Using Biodegradable Materials for Drifting Buoys
EAGER:迈向生态友好型海洋学 - 使用可生物降解材料制作漂流浮标
- 批准号:
2415106 - 财政年份:2024
- 资助金额:
$ 89.78万 - 项目类别:
Standard Grant
EAGER: A Novel Carbon Nanotube Based Phosphate Sensor Using Potentiometric Principles for Oceanographic Use
EAGER:一种基于碳纳米管的新型磷酸盐传感器,采用电位原理用于海洋学用途
- 批准号:
2212606 - 财政年份:2022
- 资助金额:
$ 89.78万 - 项目类别:
Standard Grant
相似国自然基金
含氢非晶碳复合薄膜中碳纳米管阵列原位生长机理、可控制备及其摩擦学性能研究
- 批准号:52305195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蒽醌-碳纳米管电极集/释碳反应的微环境构建及其物质传输解析
- 批准号:52306083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
碳纤维界面原位热致碳纳米管掣电组装可控生长机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
过渡金属@介孔碳-碳纳米管催化棉秆-农膜共气化的产氢/焦油裂解同步强化机理
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低铂合金-碳点复合纳米管阵列的设计制备及其电催化合成H2O2的性能调控
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 89.78万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 89.78万 - 项目类别:
Continuing Grant
Towards a better understanding of FC-CVD carbon nanotube synthesis
更好地理解 FC-CVD 碳纳米管合成
- 批准号:
2891622 - 财政年份:2023
- 资助金额:
$ 89.78万 - 项目类别:
Studentship
I-Corps: Novel Aligned Carbon Nanotube Arrays for Radiofrequency Technologies
I-Corps:用于射频技术的新型对齐碳纳米管阵列
- 批准号:
2313213 - 财政年份:2023
- 资助金额:
$ 89.78万 - 项目类别:
Standard Grant
Development of Al-CNT with high strength and electrical conductivity by using low oxygen powder metallurgy process
采用低氧粉末冶金工艺开发高强高导电Al-CNT
- 批准号:
22KJ1590 - 财政年份:2023
- 资助金额:
$ 89.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows