DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
基本信息
- 批准号:1841807
- 负责人:
- 金额:$ 52.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Nature exquisitely controls the spatial arrangement of key pigments and dyes in the process of photosynthesis to harness solar energy. Mimicry of controlled dye arrangements in synthetic materials can be realized through tailored design of molecules and molecular arrangements. However, exerting reliable control over the assembly of engineered molecular materials in the crucial 10-100 nanometer "mesoscale" regime, thousands of times smaller than a millimeter, remains elusive. Such mesoscale molecular structures will combine charge and energy transfer activities with capabilities for assembly in biological solutions, and compatibility with biological environments. Given the multitude of molecular design possibilities, it is essential that experimental programs incorporate computer modeling and data-driven screening to guide experimental design and synthesis. Tight integration and mutually reinforcing feedback between computation and experiment can reveal fundamental design rules for molecular assembly, and accelerate the discovery and development of multi-molecule assemblies with tailored structure and function. This project will develop these functional molecular superstructures in a collaboration encompassing molecular synthesis, self-assembly analogous to biological systems, modeling of the structures and electrical properties of the assemblies, and utilizing the assemblies to manage interactions between light and electricity. The PIs are committed to workforce training and development within this project, guiding the next generation of materials and data scientists of diverse socio-economic background in state-of-the-art tools and exposing them to an integrated interdisciplinary mode of work that will define future research. Technical Description: The photophysical and electrical properties of pi-conjugated supramolecular systems depend critically on the explicit nature of the intermolecular electronic interactions. These interactions are governed by the precise molecular structure and chemistry and emergent supramolecular arrangements. The PIs developed a peptide construct that offer a pathway to exert such control over emergent supramolecular structure through tailoring of steric bulk and variable hydrophobicity of the component sequences to influence intermolecular orientations, higher-order fibrilization, and specific electronic outcomes. They initially used an Edisonian approach to uncover these variations, but the goals of this project are to wield explicit engineered control through tightly integrated atomistic simulations and electronic structure calculations. The research activities build upon the team?s strong foundation to accomplish these goals in two specific objectives: (i) the development of sophisticated peptidic semiconductor materials with advanced optoelectronic functionality and (ii) the development of new assembly paradigms leading to heterogeneous peptidic nanomaterials with chemical and electronic gradients and localized electric fields. The execution of this work will entail interconnected efforts by the research team in the (i) synthesis of new pi-electron units and new self-assembling peptides, (ii) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (iii) characterization of electrical transport within the nanomaterials. This project will make special provision for research opportunities for undergraduate students, women, and underrepresented minorities. The PIs will train and mentor researchers in state-of-the-art experimental and computational tools and expose them to an integrated interdisciplinary mode of work. K-12 outreach activities will inspire excitement and awareness of materials science and encourage students to pursue higher education in science, technology, engineering, and math (STEM) fields.
非技术描述:大自然在光合作用利用太阳能的过程中巧妙地控制着关键颜料和染料的空间排列。 合成材料中受控染料排列的模拟可以通过分子和分子排列的定制设计来实现。然而,在关键的 10-100 纳米“介观尺度”(比一毫米小数千倍)范围内对工程分子材料的组装进行可靠的控制仍然难以实现。这种介观分子结构将电荷和能量转移活性与在生物溶液中组装的能力以及与生物环境的兼容性结合起来。鉴于分子设计的可能性众多,实验程序必须结合计算机建模和数据驱动的筛选来指导实验设计和合成。计算和实验之间的紧密集成和相互增强的反馈可以揭示分子组装的基本设计规则,并加速具有定制结构和功能的多分子组装体的发现和开发。该项目将通过合作开发这些功能性分子超结构,包括分子合成、类似于生物系统的自组装、组件的结构和电特性建模,以及利用组件来管理光和电之间的相互作用。 PI 致力于该项目中的劳动力培训和发展,指导具有不同社会经济背景的下一代材料和数据科学家使用最先进的工具,并使他们接触到综合的跨学科工作模式,该模式将定义未来的研究。技术描述:π共轭超分子系统的光物理和电学性质主要取决于分子间电子相互作用的明确性质。这些相互作用受到精确的分子结构和化学以及新兴的超分子排列的控制。 PI 开发了一种肽构建体,该构建体提供了一种途径,通过调整组件序列的空间体积和可变疏水性来影响分子间取向、高阶纤维化和特定的电子结果,从而对新兴超分子结构进行控制。他们最初使用爱迪生方法来揭示这些变化,但该项目的目标是通过紧密集成的原子模拟和电子结构计算来进行显式工程控制。研究活动建立在团队的坚实基础上,以实现两个具体目标:(i)开发具有先进光电功能的复杂肽半导体材料,以及(ii)开发新的组装范例,从而产生异质肽纳米材料化学和电子梯度以及局部电场。 这项工作的执行需要研究团队在(i)合成新的π电子单元和新的自组装肽,(ii)纳米材料聚集体及其高阶的分子和数据驱动建模方面进行相互关联的努力组件,以及(iii)纳米材料内电传输的表征。该项目将为本科生、女性和代表性不足的少数族裔提供特别的研究机会。 PI 将培训和指导研究人员使用最先进的实验和计算工具,并使他们接触综合的跨学科工作模式。 K-12 推广活动将激发人们对材料科学的兴趣和认识,并鼓励学生在科学、技术、工程和数学 (STEM) 领域接受高等教育。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution of π-Peptide Self-Assembly: From Understanding to Prediction and Control
α-肽自组装的演变:从理解到预测和控制
- DOI:10.1021/acs.langmuir.2c02399
- 发表时间:2022-12
- 期刊:
- 影响因子:3.9
- 作者:Ferguson, Andrew L.;Tovar, John D.
- 通讯作者:Tovar, John D.
Patchy Particle Model of the Hierarchical Self-Assembly of π-Conjugated Optoelectronic Peptides
α-共轭光电肽分级自组装的斑块粒子模型
- DOI:10.1021/acs.jpcb.8b05781
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Mansbach, Rachael A.;Ferguson, Andrew L.
- 通讯作者:Ferguson, Andrew L.
Revealing the Sequence-Structure–Electronic Property Relation of Self-Assembling π-Conjugated Oligopeptides by Molecular and Quantum Mechanical Modeling
通过分子和量子力学建模揭示自组装α-共轭寡肽的序列结构与电子性质关系
- DOI:10.1021/acs.langmuir.9b02593
- 发表时间:2019-11
- 期刊:
- 影响因子:3.9
- 作者:Thurston, Bryce A.;Shapera, Ethan P.;Tovar, John D.;Schleife, André;Ferguson, Andrew L.
- 通讯作者:Ferguson, Andrew L.
Hybrid computational–experimental data-driven design of self-assembling π-conjugated peptides
自组装α-共轭肽的混合计算-实验数据驱动设计
- DOI:10.1039/d1dd00047k
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Shmilovich, Kirill;Panda, Sayak Subhra;Stouffer, Anna;Tovar, John D.;Ferguson, Andrew L.
- 通讯作者:Ferguson, Andrew L.
Controlling Supramolecular Chirality in Peptide−π-Peptide Networks by Variation of the Alkyl Spacer Length
通过改变烷基间隔基长度控制肽-肽网络中的超分子手性
- DOI:10.1021/acs.langmuir.9b02683
- 发表时间:2019-10
- 期刊:
- 影响因子:3.9
- 作者:Panda, Sayak Subhra;Shmilovich, Kirill;Ferguson, Andrew L.;Tovar, John D.
- 通讯作者:Tovar, John D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Ferguson其他文献
Enough is Enough: Policy Uncertainty and Acquisition Abandonment
受够了:政策不确定性和收购放弃
- DOI:
10.2139/ssrn.3883981 - 发表时间:
2021-07-10 - 期刊:
- 影响因子:0
- 作者:
Andrew Ferguson;Wei;P. Lam - 通讯作者:
P. Lam
‘Know when to fold 'em’: Policy uncertainty and acquisition abandonment
“知道何时放弃”:政策不确定性和收购放弃
- DOI:
10.1111/acfi.13179 - 发表时间:
2023-10-15 - 期刊:
- 影响因子:0
- 作者:
Andrew Ferguson;Cecilia Wei Hu;P. Lam - 通讯作者:
P. Lam
The Hausdorff dimension of the projections of self-affine carpets
自仿射地毯投影的豪斯多夫维数
- DOI:
10.4064/fm209-3-1 - 发表时间:
2009-03-12 - 期刊:
- 影响因子:0.6
- 作者:
Andrew Ferguson;T. Jordan;Pablo Shmerkin - 通讯作者:
Pablo Shmerkin
The clinical relevance of oliguria in the critically ill patient: analysis of a large observational database
危重患者少尿的临床相关性:大型观察数据库的分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:15.1
- 作者:
J. Vincent;Andrew Ferguson;P. Pickkers;Stephan M. Jakob;U. Jaschinski;G. Almekhlafi;Marc Leone;Majid Mokhtari;L. E. Fontes;Philippe R. Bauer;Y. Sakr;for the Icon Investigators - 通讯作者:
for the Icon Investigators
Political discretion and risk: the Fukushima nuclear disaster, the distribution of global operations, and uranium company valuation
政治自由裁量权和风险:福岛核灾难、全球业务分布以及铀公司估值
- DOI:
10.1093/icc/dtad038 - 发表时间:
2023-06-27 - 期刊:
- 影响因子:2.5
- 作者:
Murod Aliyev;T. Devinney;Andrew Ferguson;P. Lam - 通讯作者:
P. Lam
Andrew Ferguson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Ferguson', 18)}}的其他基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323730 - 财政年份:2023
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Latent Space Simulators for the Efficient Estimation of Long-time Molecular Thermodynamics and Kinetics
用于有效估计长时间分子热力学和动力学的潜在空间模拟器
- 批准号:
2152521 - 财政年份:2022
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
REU SITE: Research Experience for Undergraduates in Molecular Engineering
REU 网站:分子工程本科生的研究经验
- 批准号:
2050878 - 财政年份:2021
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
EAGER: (ST1) Collaborative Research: Exploring the emergence of peptide-based compartments through iterative machine learning, molecular modeling, and cell-free protein synthesis
EAGER:(ST1)协作研究:通过迭代机器学习、分子建模和无细胞蛋白质合成探索基于肽的隔室的出现
- 批准号:
1939463 - 财政年份:2019
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Type II: Data-Driven Characterization and Engineering of Protein Hydrophobicity
EAGER:合作研究:II 类:数据驱动的蛋白质疏水性表征和工程
- 批准号:
1844505 - 财政年份:2019
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
- 批准号:
1841805 - 财政年份:2018
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Nonlinear Manifold Learning of Protein Folding Funnels from Delay-Embedded Experimental Measurements
来自延迟嵌入实验测量的蛋白质折叠漏斗的非线性流形学习
- 批准号:
1841810 - 财政年份:2018
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
CAREER: Teaching Machines to Design Self-Assembling Materials
职业:教授机器设计自组装材料
- 批准号:
1841800 - 财政年份:2018
- 资助金额:
$ 52.52万 - 项目类别:
Continuing Grant
Nonlinear dimensionality reduction and enhanced sampling in molecular simulation using auto-associative neural networks
使用自关联神经网络进行分子模拟中的非线性降维和增强采样
- 批准号:
1664426 - 财政年份:2017
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
- 批准号:
1729011 - 财政年份:2017
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自主性边界的人机协作-对抗混合智能控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 52.52万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: High-Throughput Screening of Electrolytes for the Next Generation of Rechargeable Batteries
合作研究:DMREF:下一代可充电电池电解质的高通量筛选
- 批准号:
2323118 - 财政年份:2023
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: De Novo Proteins as Junctions in Polymer Networks
合作研究:DMREF:De Novo 蛋白质作为聚合物网络中的连接点
- 批准号:
2323316 - 财政年份:2023
- 资助金额:
$ 52.52万 - 项目类别:
Standard Grant