Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
基本信息
- 批准号:1901830
- 负责人:
- 金额:$ 34.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many models in the sciences and engineering lead to mathematical problems about solutions of equations in commuting variables. However, starting with quantum mechanics, a great number of models emerged that led to mathematical problems involving variables that no longer commute. Noncommutative Algebra is one of the areas of mathematics that studies those structures. The research projects that are funded by this award investigate the interrelations between the commutative and noncommutative settings, using a branch of geometry called Poisson geometry. Three other approaches are used to study the noncommutative setting: a combinatorial approach based on intricate internal transformations of the objects, called cluster mutations; an algebraic approach that investigates intrinsically defined structures called Calabi-Yau categories; and a noncommutative geometric approach using quantum versions of symmetric spaces. The four approaches are simultaneously used to carry out a detailed study of the properties and symmetries of noncommutative objects. Further, the noncommutative objects are shown to exhibit various forms of rigidity. This is used to settle problems in algebra, geometry, combinators, and dynamical systems that were previously posed without any reference to the noncommutative setting. These research activities will be used as the foundation for the training of graduate and undergraduate students and for mentoring mathematics postdocs.The research projects funded under this awaard investigate problems in noncommutative algebra, quantum symmetric spaces, and noncommutative projective algebraic geometry and the relations of these problems to Poisson geometry, combinatorics, triangulated categories, and integrable systems. On the one hand, the program aims at using methods from the latter areas to describe the structure and representations of quantum cluster algebras at roots of unity, the Drinfeld doubles of Nichols algebras, the algebras that appear in the theory of quantum symmetric pairs, and the algebras that describe noncommutative projective spaces. In the opposite direction, previously posed problems in the latter areas are converted to problems for noncommutative algebras and their representation categories, and are then resolved within that setting. One of the directions of this program is the construction of universal K-matrices on the symmetric subalgebras of the Drinfeld doubles of Nichols algebras, and using this to study the ring theoretic properties of Nichols algebras. Another direction aims at the classification of irreducible representations of Nichols algebras of diagonal type using Poisson orders and noncommutative discriminants. A third direction develops a general setting for the study of finite dimensional representations of quantum cluster algebras at root of unity using Poisson geometry and Cayley-Hamilton algebras. Three additional directions investigate the geometry of noncommutative projective spaces modeled by higher dimensional elliptic algebras, the structure of 2-Calabi-Yau categories via categorical C-vectors and dynamical systems, and the construction of integral quantum cluster algebra structures on the canonical forms of quantized coordinate rings of varieties in theory of Lie groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学和工程中的许多模型导致有关通勤变量方程解决方案的数学问题。但是,从量子力学开始,出现了许多模型,这些模型导致了数学问题,涉及不再通勤的变量。非共同代数是研究这些结构的数学领域之一。该奖项资助的研究项目使用称为Poisson几何形状的分支,调查了交换和非交通设置之间的相互关系。其他三种方法用于研究非共同设置:基于复杂的对象的内部变换(称为群集突变)的组合方法; 一种代数方法,研究了本质上定义的结构称为calabi-yau类别;以及使用对称空间的量子版本的非共同几何方法。这四种方法同时用于对非交通对象的性质和对称性进行详细研究。此外,表明非共同对象表现出各种形式的刚性。这用于在代数,几何形状,组合器和动力学系统中解决问题,这些问题先前构成了无通用设置。 These research activities will be used as the foundation for the training of graduate and undergraduate students and for mentoring mathematics postdocs.The research projects funded under this awaard investigate problems in noncommutative algebra, quantum symmetric spaces, and noncommutative projective algebraic geometry and the relations of these problems to Poisson geometry, combinatorics, triangulated categories, and integrable systems.一方面,该计划旨在使用后者区域的方法来描述统一根部的量子群集代数的结构和表示,即nichols代数的Drinfeld双打,即量子对称对理论中出现的代数,以及描述非共同投影空间的代数。在相反的方向上,以前在后一个区域中提出的问题被转换为非共同代数及其表示类别的问题,然后在该环境中解决。该程序的方向之一是在尼科尔(Nichols)代数的德林菲尔德双打对称亚代代代代代代代代代代代代代数上的构建通用k-矩阵,并使用它来研究尼科尔斯代数的环理论特性。另一个方向旨在使用泊松命令和非交通性判别因子对对角类型的尼科尔(Nichols)代数的不可减至表示。第三个方向开发了研究使用泊松几何形状和cayley-hamilton代数的量子群集代数的有限维表示的一般设置。三个其他方向研究了由较高维椭圆形的代数建模的非共同投影空间的几何形状,通过分类c-媒介和动力学系统的2-卡拉比YAU类别的结构,以及整体量子集群代数的结构认为值得通过基金会的智力优点和更广泛影响的评论标准来评估值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integral quantum cluster structures
- DOI:10.1215/00127094-2020-0061
- 发表时间:2020-03
- 期刊:
- 影响因子:2.5
- 作者:K. Goodearl;M. Yakimov
- 通讯作者:K. Goodearl;M. Yakimov
Bivariate continuous q-Hermite polynomials and deformed quantum Serre relations
双变量连续 q-Hermite 多项式和变形量子 Serre 关系
- DOI:10.1142/s0219498821400168
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Riley Casper, W.;Kolb, Stefan;Yakimov, Milen
- 通讯作者:Yakimov, Milen
Poisson orders on large quantum groups
大量子群的泊松阶
- DOI:10.1016/j.aim.2023.109134
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Andruskiewitsch, Nicolás;Angiono, Iván;Yakimov, Milen
- 通讯作者:Yakimov, Milen
Reflective prolate-spheroidal operators and the KP/KdV equations
- DOI:10.1073/pnas.1906098116
- 发表时间:2019-09-10
- 期刊:
- 影响因子:11.1
- 作者:Casper, W. Riley;Grunbaum, F. Alberto;Zurrian, Ignacio
- 通讯作者:Zurrian, Ignacio
Integral operators, bispectrality and growth of Fourier algebras
积分算子、双谱性和傅里叶代数的增长
- DOI:10.1515/crelle-2019-0031
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Casper, W. Riley;Yakimov, Milen T.
- 通讯作者:Yakimov, Milen T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milen Yakimov其他文献
Milen Yakimov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milen Yakimov', 18)}}的其他基金
Noncommutative Algebras and Monoidal Triangulated Categories
非交换代数和幺半群三角范畴
- 批准号:
2200762 - 财政年份:2022
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
Noncommutative Algebras and Related Categorical Structures
非交换代数和相关分类结构
- 批准号:
2131243 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Continuing Grant
International Conference on Representation Theory, Mathematical Physics and Integrable Systems
表示论、数学物理和可积系统国际会议
- 批准号:
1803265 - 财政年份:2018
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Quantum Groups and Quantum Cluster Algebras
量子群和量子簇代数
- 批准号:
1303038 - 财政年份:2013
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Quantum Groups, Poisson Lie Groups, and Combinatorics
量子群、泊松李群和组合学
- 批准号:
1001632 - 财政年份:2010
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Poisson Lie groups, representation theory, combinatorics, and integrable systems
泊松李群、表示论、组合学和可积系统
- 批准号:
0701107 - 财政年份:2007
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
Poisson Lie groups, integrable systems, and representation theory
泊松李群、可积系统和表示论
- 批准号:
0406057 - 财政年份:2004
- 资助金额:
$ 34.51万 - 项目类别:
Standard Grant
相似国自然基金
有关代数结构的拓扑问题
- 批准号:12101349
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
有关代数结构的拓扑问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
与量子群有关的一些代数的表示理论
- 批准号:11501368
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
有关量子代数的实现与表示
- 批准号:11371238
- 批准年份:2013
- 资助金额:50.0 万元
- 项目类别:面上项目
与辫子群有关的几个问题的研究
- 批准号:11201449
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
- 批准号:
22KJ0375 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The study of algebraic varieties related to Calabi-Yau varieties in positive characteristic
与Calabi-Yau簇相关的正特征代数簇研究
- 批准号:
23K03066 - 财政年份:2023
- 资助金额:
$ 34.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Amenability properties of semitopological semigroups and related Banach algebras
半拓扑半群和相关巴纳赫代数的顺应性性质
- 批准号:
RGPIN-2022-04137 - 财政年份:2022
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Amenability properties and related problems of Banach algebras associated to groups and semigroups
与群和半群相关的 Banach 代数的顺应性性质和相关问题
- 批准号:
RGPIN-2016-05987 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
Discovery Grants Program - Individual
Hopf algebras and related topics
霍普夫代数及相关主题
- 批准号:
564559-2021 - 财政年份:2021
- 资助金额:
$ 34.51万 - 项目类别:
University Undergraduate Student Research Awards