Arithmetic and Algebraic Geometry
算术和代数几何
基本信息
- 批准号:1901286
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding for a conference titled "Arithmetic and Algebraic Geometry" to be held at the University of Michigan, Ann Arbor, in the period August 5-9, 2019. It will feature talks by international experts known for their expository skills, encourage new collaborations, and serve as an excellent opportunity where junior participants can learn and meet experts in the field.The areas of arithmetic and algebraic geometry have traditionally attracted the interest of many young mathematicians because of the depth and beauty of the ideas they offer. The purpose of this conference is to bring together leaders of various subfields within this very broad subject to explain some of the latest developments. The topics represented at the conference will include complex geometry, algebraic cycles, motives, birational geometry, derived and higher categorical techniques, rational points, and arithmetic and geometry of K3 surfaces. This conference will provide opportunities for fruitful discussions and exchange of ideas across different areas of arithmetic and algebraic geometry. More information can be found at https://sites.google.com/view/aagaa/home.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhargav Bhatt其他文献
A Gorenstein criterion for strongly Fregular rings
强规则环的 Gorenstein 准则
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
Recent development of the Faith conjecture
Faith猜想的最新发展
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto;小池寿俊・大城紀代市 - 通讯作者:
小池寿俊・大城紀代市
Complex Rings, Quaternion Rings and Octonion Rings
复环、四元环和八元环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede;Shunsuke Takagi;Mitsuyasu Hashimoto and Yusuke Nakajima;菊政勲 - 通讯作者:
菊政勲
General hyperplane sections of canonical 3-folds in positive characteristic
正特征正则三折的一般超平面截面
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
F-singularities and weak ordinarity conjecture
F-奇点和弱平凡猜想
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bhargav Bhatt;Karl Schwede and Shunsuke Takagi;小池寿俊・大城紀代市;高木 俊輔;GangYong Lee ・大城紀代市;Mitsuyasu Hashimoto;高木 俊輔;橋本光靖;小池寿俊;Shunsuke Takagi;鈴木裕也・山浦浩太;Mitsuyasu Hashimoto;Shunsuke Takagi;橋本光靖;小池寿俊;大城紀代市;Shunsuke Takagi;橋本光靖;上村英男・菊政勲・倉富要輔;Shunsuke Takagi;大城紀代市;Shunsuke Takagi;Takuzo Okada;小池寿俊;Shunsuke Takagi - 通讯作者:
Shunsuke Takagi
Bhargav Bhatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhargav Bhatt', 18)}}的其他基金
Algebraic Geometry Close to Characteristic p
代数几何接近特征p
- 批准号:
1801689 - 财政年份:2018
- 资助金额:
$ 4.5万 - 项目类别:
Continuing Grant
Algebraic Geometry Approaching Characteristic p
代数几何逼近特征p
- 批准号:
1501461 - 财政年份:2015
- 资助金额:
$ 4.5万 - 项目类别:
Continuing Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1522828 - 财政年份:2014
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1340424 - 财政年份:2013
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Interactions between p-adic arithmetic geometry and commutative algebra
p进算术几何与交换代数之间的相互作用
- 批准号:
1160914 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
相似国自然基金
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
两流体代数模型新拓展及对反常核结构现象的理论研究
- 批准号:12375113
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
几类代数Riccati方程的特殊解的显式表示及其应用
- 批准号:12371380
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
李代数与有限W代数的Whittaker型表示和有限维表示
- 批准号:12371026
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
广义四元数代数上的若干超矩阵方程组及应用
- 批准号:12371023
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
RGPIN-2022-03116 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic geometry and algebraic number theory
算术几何与代数数论
- 批准号:
CRC-2017-00306 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Canada Research Chairs
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
DGECR-2022-00444 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Discovery Launch Supplement
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
RGPIN-2022-03461 - 财政年份:2022
- 资助金额:
$ 4.5万 - 项目类别:
Discovery Grants Program - Individual