Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
基本信息
- 批准号:2305231
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The award provides funding for the five-day conference "Arithmetic Geometry and Algebraic Groups" held at the University of Virginia in Charlottesville during the period May 24-28, 2023 (website https://sites.google.com/view/agag-at-uva/home). The conference will highlight recent advances at the meeting ground of those areas and will explore new connections. It will help to identify new questions in arithmetic geometry that have potential applications to algebraic groups and will also promote the development of the arithmetic theory of algebraic groups over general fields. The program of the conference will consist of 50-minute invited talks, 20-minute short communications, and a poster session. The list of invited speakers includes mathematicians from the US, Canada, Chile, and France, with broad participation of early career mathematicians from these and other countries, and several members of groups underrepresented in mathematics.Topics presented at the conference will include various forms of the local-global principle over different classes of fields and the analysis of algebraic groups having good reduction at an appropriate set of discrete valuations of the base field. These issues are related to the investigation of unramified cohomology, which comes up in many problems in algebraic and arithmetic geometry. In turn, finiteness results for unramified cohomology (including those obtained very recently) rely on the analysis of algebraic cycles. Along with these themes, which are considered "traditional" for arithmetic geometry and the theory of algebraic groups, the program will include recently discovered applications of Diophantine approximation to linear groups, which has resulted in the resolution of an old problem concerning linear groups with bounded generation and has led to further developments in the area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei Rapinchuk其他文献
Andrei Rapinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei Rapinchuk', 18)}}的其他基金
Elliptic Curves, Torsors, and L-functions
椭圆曲线、Torsors 和 L 函数
- 批准号:
1660462 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Arithmetic and Zariski-dense subgroups in algebraic groups
代数群中的算术和 Zariski 密集子群
- 批准号:
1301800 - 财政年份:2013
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Arithmetic Groups, Their Applications and Generalizations
算术群、它们的应用和概括
- 批准号:
0965758 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
- 批准号:
1034750 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Normal Subgroups of the Groups of Rational Points of Algebraic Groups, Congruence Subgroup Problem, and Related Topics
代数群有理点群的正规子群、同余子群问题及相关主题
- 批准号:
0502120 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Normal Subgroup Structure of the Groups of Rational Points of Algebraic Groups and of Their Special Subgroups
代数群及其特殊子群有理点群的正规子群结构
- 批准号:
0138315 - 财政年份:2002
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
The Congruence Subgroups Problem and Groups of Finite Representation Type
同余子群问题和有限表示型群
- 批准号:
9970148 - 财政年份:1999
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
The Congruence Subgroup Problem and Groups of Finite Representation Type
同余子群问题与有限表示型群
- 批准号:
9700474 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
整体域及其上阿贝尔簇相关算术对象的变化规律研究
- 批准号:12371013
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
随机整数与随机排列的因子分布和Smith矩阵算术性质的研究
- 批准号:12371333
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
自守L-函数的Dirichlet系数的算术分布
- 批准号:12271297
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
志村簇的几何及其算术应用
- 批准号:12231001
- 批准年份:2022
- 资助金额:235 万元
- 项目类别:重点项目
相似海外基金
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Southwest Conference on Arithmetic Geometry
西南算术几何学术会议
- 批准号:
2200721 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Hawaii Conference on Algebraic Number Theory, Arithmetic Geometry, and Modular Forms
夏威夷代数数论、算术几何和模形式会议
- 批准号:
1162631 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on "Diophantine Geometry and Arithmetic Dynamics"
“丢番图几何与算术动力学”会议
- 批准号:
1203983 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Standard Grant