RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections

RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正

基本信息

  • 批准号:
    1900140
  • 负责人:
  • 金额:
    $ 38.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

This research aims to address the pressing challenges on learning and inference from large-dimensional data. Contemporary sensing and data acquisition technologies produce data at an unprecedented rate. A ubiquitous challenge in modern data applications is thus to efficiently and reliably extract relevant information and associated insights from a deluge of data. In the meantime, this challenge is exacerbated by the unprecedented growth of relevant features one needs to reason about, which oftentimes even outpaces the growth of data samples. Classical statistical inference paradigms, which either only work in the presence of an enormous number of data samples, or ignore the computational cost of the estimators at all, become highly insufficient, or even unreliable, for many emerging applications of machine learning and big-data analytics. To address the above pressing issues in high dimensions, novel theoretical tools need to be brought in the picture in order to provide a comprehensive understanding of the performance limits of various algorithms and tasks. The goal of this project is four-fold: First, to develop a modern theory to characterize precise performance of classical statistical algorithms in high dimensions. Second, to suggest proper corrections of classical statistical inference procedures to accommodate the sample-starved regime. Third, to develop computationally efficient algorithms that can provably attain the fundamental statistical limits, if possible. Finally, forth, to identify potential computational barriers if the fundamental statistical limits cannot be met. The transformative potential of the proposed research program is in the development of foundational statistical data analytics theory through a novel combination of statistics, approximation theory, statistical physics, mathematical optimization, and information theory, offering scalable statistical inference and learning algorithms. The theory and algorithms developed within this project will have direct impact on various engineering and science applications such as large-scale machine learning, DNA sequencing, genetic disease analysis, and natural language processing. This collaborative program provides cross-university opportunities for students training, and we are committed to engaging and helping underrepresented and women students in STEM through long-term mentorships and outreach activities.This research aims to address the pressing challenges on learning and inference from large-dimensional data. Contemporary sensing and data acquisition technologies produce data at an unprecedented rate. A ubiquitous challenge in modern data applications is thus to efficiently and reliably extract relevant information and associated insights from a deluge of data. In the meantime, this challenge is exacerbated by the unprecedented growth of relevant features one needs to reason about, which oftentimes even outpaces the growth of data samples. Classical statistical inference paradigms, which either only work in the presence of an enormous number of data samples, or ignore the computational cost of the estimators at all, become highly insufficient, or even unreliable, for many emerging applications of machine learning and big-data analytics. To address the above pressing issues in high dimensions, novel theoretical tools need to be brought in the picture in order to provide a comprehensive understanding of the performance limits of various algorithms and tasks. The goal of this project is four-fold: First, to develop a modern theory to characterize precise performance of classical statistical algorithms in high dimensions. Second, to suggest proper corrections of classical statistical inference procedures to accommodate the sample-starved regime. Third, to develop computationally efficient algorithms that can provably attain the fundamental statistical limits, if possible. Finally, forth, to identify potential computational barriers if the fundamental statistical limits cannot be met. The transformative potential of the proposed research program is in the development of foundational statistical data analytics theory through a novel combination of statistics, approximation theory, statistical physics, mathematical optimization, and information theory, offering scalable statistical inference and learning algorithms. The theory and algorithms developed within this project will have direct impact on various engineering and science applications such as large-scale machine learning, DNA sequencing, genetic disease analysis, and natural language processing. This collaborative program provides cross-university opportunities for students training, and we are committed to engaging and helping underrepresented and women students in STEM through long-term mentorships and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究旨在解决大维数据学习和推理的紧迫挑战。当代传感和数据采集技术以前所未有的速度产生数据。因此,现代数据应用中普遍存在的挑战是从海量数据中高效、可靠地提取相关信息和相关见解。与此同时,需要推理的相关特征的空前增长加剧了这一挑战,这种增长常常甚至超过了数据样本的增长。经典的统计推理范式要么仅在存在大量数据样本的情况下起作用,要么根本忽略估计器的计算成本,对于机器学习和大数据的许多新兴应用来说变得非常不足,甚至不可靠分析。为了解决高维度的上述紧迫问题,需要引入新颖的理论工具,以便全面了解各种算法和任务的性能限制。该项目的目标有四个:首先,开发一种现代理论来表征高维经典统计算法的精确性能。其次,建议对经典统计推断程序进行适当的修正,以适应样本匮乏的情况。第三,如果可能的话,开发计算高效的算法,可以证明达到基本的统计极限。最后,如果无法满足基本统计限制,则确定潜在的计算障碍。拟议研究计划的变革潜力在于通过统计学、近似理论、统计物理学、数学优化和信息论的新颖组合来发展基础统计数据分析理论,提供可扩展的统计推理和学习算法。 该项目开发的理论和算法将对各种工程和科学应用产生直接影响,例如大规模机器学习、DNA测序、遗传疾病分析和自然语言处理。该合作项目为学生培训提供了跨大学的机会,我们致力于通过长期指导和推广活动吸引和帮助 STEM 领域中代表性不足的女学生。这项研究旨在解决大规模学习和推理方面的紧迫挑战。维度数据。当代传感和数据采集技术以前所未有的速度产生数据。因此,现代数据应用中普遍存在的挑战是从海量数据中高效、可靠地提取相关信息和相关见解。与此同时,需要推理的相关特征的空前增长加剧了这一挑战,这种增长常常甚至超过了数据样本的增长。经典的统计推理范式要么仅在存在大量数据样本的情况下起作用,要么根本忽略估计器的计算成本,对于机器学习和大数据的许多新兴应用来说变得非常不足,甚至不可靠分析。为了解决高维度的上述紧迫问题,需要引入新颖的理论工具,以便全面了解各种算法和任务的性能限制。该项目的目标有四个:首先,开发一种现代理论来表征高维经典统计算法的精确性能。其次,建议对经典统计推断程序进行适当的修正,以适应样本匮乏的情况。第三,如果可能的话,开发计算高效的算法,可以证明达到基本的统计极限。最后,如果无法满足基本统计限制,则确定潜在的计算障碍。拟议研究计划的变革潜力在于通过统计学、近似理论、统计物理学、数学优化和信息论的新颖组合来发展基础统计数据分析理论,提供可扩展的统计推理和学习算法。 该项目开发的理论和算法将对各种工程和科学应用产生直接影响,例如大规模机器学习、DNA测序、遗传疾病分析和自然语言处理。该合作项目为学生培训提供跨大学的机会,我们致力于通过长期的指导和推广活动吸引和帮助 STEM 领域中代表性不足的女学生。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inference and uncertainty quantification for noisy matrix completion
Nonconvex Matrix Factorization From Rank-One Measurements
  • DOI:
    10.1109/tit.2021.3050427
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yuanxin Li;Cong Ma;Yuxin Chen;Yuejie Chi
  • 通讯作者:
    Yuanxin Li;Cong Ma;Yuxin Chen;Yuejie Chi
Nonconvex Low-Rank Symmetric Tensor Completion from Noisy Data
  • DOI:
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Changxiao Cai;Gen Li;H. Poor;Yuxin Chen
  • 通讯作者:
    Changxiao Cai;Gen Li;H. Poor;Yuxin Chen
Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction
  • DOI:
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Boyue Li;Shicong Cen;Yuxin Chen;Yuejie Chi
  • 通讯作者:
    Boyue Li;Shicong Cen;Yuxin Chen;Yuejie Chi
Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality
  • DOI:
    10.1109/tit.2022.3205781
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Changxiao Cai;H. Poor;Yuxin Chen
  • 通讯作者:
    Changxiao Cai;H. Poor;Yuxin Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxin Chen其他文献

Plant trait differences and soil moisture jointly affect insect herbivory on seedling young leaves in a subtropical forest
植物性状差异和土壤湿度共同影响亚热带森林幼苗幼叶昆虫食草
  • DOI:
    10.1016/j.foreco.2020.118878
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Wenbin Li;Yuxin Chen;Yong Shen;Y;an Lu;Shixiao Yu
  • 通讯作者:
    Shixiao Yu
Discovery of novel biphenyl-sulfonamide analogues as NLRP3 inflammasome inhibitors.
发现新型联苯磺酰胺类似物作为 NLRP3 炎性体抑制剂。
  • DOI:
    10.1016/j.bioorg.2024.107263
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Chao Huang;Jinyu Liu;Yuxin Chen;Simin Sun;Tongtong Kang;Yuqi Jiang;Xiaoyang Li
  • 通讯作者:
    Xiaoyang Li
Genicular artery embolization for the treatment of knee pain secondary to mild to severe knee osteoarthritis: One year clinical outcomes.
膝动脉栓塞治疗继发于轻度至重度膝骨关节炎的膝关节疼痛:一年临床结果。
  • DOI:
    10.1016/j.ejrad.2024.111443
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Changhao Sun;Yuxin Chen;Zhiling Gao;Longyun Wu;Rong Lu;Chaoyun Zhao;Hao Yang;Yong Chen
  • 通讯作者:
    Yong Chen
Maximizing Throughput for Coexisting Wireless Body Area Networks (WBANs) Based on Optimal Clustering
基于最优集群的共存无线体域网 (WBAN) 吞吐量最大化
  • DOI:
    10.1109/jiot.2023.3268049
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Xiaokang Hu;Kunqi Guo;Chenyang Wang;Yuxin Chen;Yuting Qian;Jiajun Zhang
  • 通讯作者:
    Jiajun Zhang
Chip-scale metalens microscope for wide-field and depth-of-field imaging
用于宽视场和景深成像的芯片级超透镜显微镜
  • DOI:
    10.1117/1.ap.4.4.046006
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    17.3
  • 作者:
    Xin Ye;Xiao Qian;Yuxin Chen;Rui Yuan;Xingjian Xiao;Chen Chen;Wei Hu;Chunyu Huang;Shining Zhu;Tao Li
  • 通讯作者:
    Tao Li

Yuxin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxin Chen', 18)}}的其他基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2221009
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2218773
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106739
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2014279
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Nonconvexity in High-Dimensional Statistical Estimation
CIF:小:驯服高维统计估计中的非凸性
  • 批准号:
    1907661
  • 财政年份:
    2019
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了