Collaborative Research: Real-Time Data-Driven Anomaly Detection for Complex Networks
协作研究:复杂网络的实时数据驱动异常检测
基本信息
- 批准号:2040500
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anomaly detection is an important problem dealing with the detection of abnormal data patterns. Importance of anomaly detection lies in the fact that an anomaly in the observed data may be a sign of an unwanted and often actionable event such as failure, malicious activity, etc. in the underlying system. In many real-time systems, timely and accurate detection of abnormal data patterns is crucial, and will allow proper countermeasures to be taken in a timely manner, to counteract any possible harm. Although anomaly detection has long been studied, today's complex networks exhibit new challenges, such as: low latency requirements, data size, system dynamics, unknown distributions, distributed nature, and privacy. The objective of this proposal is to investigate effective and scalable approaches for real-time data-driven anomaly detection in complex systems with these challenges. The main themes of this proposal address multiple important problems in the early detection of anomalies and attacks in a general complex network setting. Considering the importance of cybersecurity in today's world, methodologies to understand and forewarn changes in the organizational dynamics of such complicated networks is of immense significance. This proposal directly addresses these issues by bringing a fresh and novel set of engineering tools and ideas.Following a systematic approach, this project first considers (1) how to timely detect anomalies in centralized high-dimensional systems with dynamicity and hidden anomaly challenges; (ii) how to deal with resource constraints in monitoring distributed systems; and (iii) how to enable privacy-preserving solutions for real-time anomaly detection in distributed systems. These challenges and the solution methods presented in this project are generally applicable to a variety of complex systems. To be specific, this project focuses on two challenging IoT networks: surveillance camera network and smart home network. The proposed approaches exploit an array of advanced techniques including sequential change detection, deep reinforcement learning, event-triggered processing, and differential privacy, and will bring significant innovations to the theory and applications of anomaly detection. In particular, the practical use of proposed algorithms will be demonstrated and their performance will be evaluated with respect to the state of the art using hardware implementations of two IoT networks - a surveillance camera network and a smart home network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
异常检测是处理异常数据模式检测的一个重要问题。异常检测的重要性在于,观察到的数据中的异常可能是底层系统中不需要的且通常可操作的事件的迹象,例如故障、恶意活动等。在许多实时系统中,及时准确地检测异常数据模式至关重要,并且可以及时采取适当的对策,以消除任何可能的危害。尽管异常检测早已被研究,但当今的复杂网络呈现出新的挑战,例如:低延迟要求、数据大小、系统动态、未知分布、分布式性质和隐私。该提案的目标是研究有效且可扩展的方法,在面临这些挑战的复杂系统中进行实时数据驱动的异常检测。该提案的主题解决了一般复杂网络环境中早期检测异常和攻击的多个重要问题。考虑到网络安全在当今世界的重要性,理解和预警此类复杂网络的组织动态变化的方法具有巨大的意义。该提案通过带来一套新颖的工程工具和思想来直接解决这些问题。遵循系统方法,该项目首先考虑(1)如何及时检测具有动态性和隐藏异常挑战的集中式高维系统中的异常; (ii) 如何处理监控分布式系统的资源限制; (iii) 如何在分布式系统中启用实时异常检测的隐私保护解决方案。本项目提出的这些挑战和解决方法普遍适用于各种复杂系统。具体来说,该项目重点关注两个具有挑战性的物联网网络:监控摄像头网络和智能家居网络。所提出的方法利用了一系列先进技术,包括顺序变化检测、深度强化学习、事件触发处理和差异隐私,将为异常检测的理论和应用带来重大创新。特别是,将展示所提出算法的实际用途,并使用两个物联网网络(监控摄像头网络和智能家居网络)的硬件实现根据最新技术水平评估其性能。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Bit & Sequential Decentralized Detection of a Noncooperative Moving Target Through a Generalized Rao Test
多位
- DOI:10.1109/tsipn.2021.3126930
- 发表时间:2021-01
- 期刊:
- 影响因子:3.2
- 作者:Cheng, Xu;Ciuonzo, Domenico;Rossi, Pierluigi Salvo;Wang, Xiaodong;Wang, Wei
- 通讯作者:Wang, Wei
Sensor Fusion for Detection and Localization of Carbon Dioxide Releases for Industry 4.0
用于工业 4.0 二氧化碳排放检测和定位的传感器融合
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Gianluca Tabella; Yuri Di
- 通讯作者:Yuri Di
Decision Fusion for Carbon Dioxide Release Detection from Pressure Relief Devices
用于泄压装置二氧化碳释放检测的决策融合
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Gianluca Tabella; Yuri Di
- 通讯作者:Yuri Di
Online Privacy-Preserving Data-Driven Network Anomaly Detection
在线隐私保护数据驱动的网络异常检测
- DOI:10.1109/jsac.2022.3142302
- 发表时间:2022-03-01
- 期刊:
- 影响因子:16.4
- 作者:M. N. Kurt;Y. Yilmaz;Xiaodong Wang;P. Mosterman
- 通讯作者:P. Mosterman
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaodong Wang其他文献
Study on the mining based on the improved DBSCAN algorithm in pick-up hotspots areas
基于改进DBSCAN算法的拾取热点区域挖掘研究
- DOI:
10.2991/iwmecs-15.2015.134 - 发表时间:
2015-10-25 - 期刊:
- 影响因子:0
- 作者:
Zhi;Xiaodong Wang;Hao Liu;Xiaowen Wang;Zhiqiang Wei - 通讯作者:
Zhiqiang Wei
Novel Broadband Slot-Spiral Antenna for Terahertz Applications
适用于太赫兹应用的新型宽带缝隙螺旋天线
- DOI:
10.3390/photonics8040123 - 发表时间:
2021-04-14 - 期刊:
- 影响因子:2.4
- 作者:
Zhen Huang;Zhaofeng Li;H. Dong;Fuhua Yang;W. Yan;Xiaodong Wang - 通讯作者:
Xiaodong Wang
ADVFilter: Adversarial Example Generated by Perturbing Optical Path
ADVFilter:扰动光路生成的对抗性示例
- DOI:
10.1007/978-3-031-27066-6_3 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Lili Zhang;Xiaodong Wang - 通讯作者:
Xiaodong Wang
An Optimal Algorithm for the Weighted Median Problem
加权中值问题的最优算法
- DOI:
10.4304/jcp.9.2.257-265 - 发表时间:
2014-01-02 - 期刊:
- 影响因子:0
- 作者:
Daxin Zhu;Xiaodong Wang - 通讯作者:
Xiaodong Wang
A Robust Multi-Level Design for Dirty-Paper Coding
用于脏纸编码的稳健多级设计
- DOI:
10.1109/tcomm.2013.050813.120718 - 发表时间:
2013-05-15 - 期刊:
- 影响因子:8.3
- 作者:
M. Uppal;G. Yue;Yan Xin;Xiaodong Wang;Zixiang Xiong - 通讯作者:
Zixiang Xiong
Xiaodong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaodong Wang', 18)}}的其他基金
A RadBackCom Approach to Integrated Sensing and Communication: Waveform Design and Receiver Signal Processing
RadBackCom 集成传感和通信方法:波形设计和接收器信号处理
- 批准号:
2335765 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Pushing Heterogeneous Catalysis into Biological Chemistry via Cofactor Regeneration
通过辅因子再生将多相催化推向生物化学
- 批准号:
EP/V048635/1 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Collaborative Research: SHF: Medium: TensorNN: An Algorithm and Hardware Co-design Framework for On-device Deep Neural Network Learning using Low-rank Tensors
合作研究:SHF:Medium:TensorNN:使用低秩张量进行设备上深度神经网络学习的算法和硬件协同设计框架
- 批准号:
1954549 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CIF: Small: Massive MIMO for Massive Machine-Type Communication
CIF:小型:用于大规模机器类型通信的大规模 MIMO
- 批准号:
1814803 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Communications with Energy Harvesting Nodes
CIF:小型:协作研究:与能量收集节点的通信
- 批准号:
1526215 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Advanced Signal Processing for Smard Grid and Renewable Energy Sources
适用于智能电网和可再生能源的高级信号处理
- 批准号:
1405327 - 财政年份:2014
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
CIF: Medium Projects: Event-Triggered Sampling: Application to Decentralized Detection and Estimation
CIF:中型项目:事件触发采样:在去中心化检测和估计中的应用
- 批准号:
1064575 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CDI Type II/Collaborative Research: A New Approach to the Modeling of Clot Formation and Lysis in Arteries
CDI II 型/合作研究:动脉血栓形成和溶解建模的新方法
- 批准号:
1028112 - 财政年份:2010
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Some Rigidity and Comparison Problems Involving the Scalar or Ricci Curvature
涉及标量或里奇曲率的一些刚性和比较问题
- 批准号:
0905904 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
基于真实世界数据的中药治疗脑梗死优势方案筛选与验证研究
- 批准号:82305436
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于TLC铝箔电导辅助激光蒸发电离质谱的山茶油真实性快速鉴别机制研究
- 批准号:32302223
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物源与动物源特征性成分相互作用的蜂蜜真实性鉴别研究
- 批准号:32372428
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于三维体素表征的真实世界开放场景多层次视觉语义感知研究
- 批准号:62372223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: RETRO: Toward Safe and Smart Operations via REal-Time Risk-based Optimization
合作研究:RETRO:通过实时基于风险的优化实现安全和智能运营
- 批准号:
2312457 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Learning Software Engineering by Contributing to Real Projects With Chatbot Assistance
协作研究:通过聊天机器人协助为实际项目做出贡献来学习软件工程
- 批准号:
2303043 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant