An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
基本信息
- 批准号:1854960
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Stochastic programs are popular models for problems requiring optimization under uncertainty. Stochastic programs are challenging to solve, especially when uncertainty characterization relies on a large number of scenarios. Consequently, both scenario decomposition and scenario reduction (clustering and aggregation) techniques are used to reduce computational burden. The latter are performed either in a heuristic manner, or in a way that does not utilize information from intermediate solutions. This project's objective is to advance a computational framework based on partitioning the scenario set adaptively during the solution process. If successful, the technique can be potentially integrated into existing algorithms and software. By enabling faster computation, and in some cases making it possible to solve larger problem instances, the project has the potential to impact a whole host of applications requiring optimization under uncertainty. The adaptive partition-based framework will provide a mechanism to aggregate information from scenario sub-problems, by replacing the entire scenario set with an adaptively constructed partition of scenarios. If successful, this will lead to an algorithmic way to coordinate the efforts between approximating the distribution and optimization. The approach will integrate both the optimal (static) scenario reduction technique and the regularized cutting-plane method with inexact oracles in the context of stochastic programs. The developed algorithms will address two-stage and multi-stage stochastic linear programs as well as stochastic integer programs.
随机程序是解决不确定性下需要优化的问题的流行模型。随机程序很难解决,尤其是当不确定性表征依赖于大量场景时。因此,场景分解和场景缩减(聚类和聚合)技术都用于减少计算负担。后者要么以启发式方式执行,要么以不利用来自中间解决方案的信息的方式执行。该项目的目标是改进一个基于在求解过程中自适应地划分场景集的计算框架。如果成功,该技术可以集成到现有的算法和软件中。通过实现更快的计算,并且在某些情况下可以解决更大的问题实例,该项目有可能影响大量需要在不确定性下进行优化的应用程序。基于自适应分区的框架将提供一种机制,通过用自适应构造的场景分区替换整个场景集,来聚合来自场景子问题的信息。如果成功,这将导致一种算法方式来协调近似分布和优化之间的工作。该方法将在随机程序的背景下将最优(静态)场景还原技术和正则化剖切面方法与不精确预言相结合。开发的算法将解决两阶段和多阶段随机线性程序以及随机整数程序。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems
多阶段随机规划问题分解方法中正则解的水平正则化
- DOI:10.1007/s10589-019-00104-x
- 发表时间:2019
- 期刊:
- 影响因子:2.2
- 作者:van Ackooij, Wim;de Oliveira, Welington;Song, Yongjia
- 通讯作者:Song, Yongjia
Adaptive Partition-Based Level Decomposition Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse
求解具有固定追索权的两阶段随机规划的自适应划分层次分解方法
- DOI:10.1287/ijoc.2017.0765
- 发表时间:2018
- 期刊:
- 影响因子:2.1
- 作者:van Ackooij, Wim;de Oliveira, Welington;Song, Yongjia
- 通讯作者:Song, Yongjia
Adaptive Partition-enabled Preprocessing for Multistage Stochastic Linear Programs
多级随机线性程序的自适应分区预处理
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Siddig, Murwan;Song, Yongjia
- 通讯作者:Song, Yongjia
Adaptive partition-based SDDP algorithms for multistage stochastic linear programming with fixed recourse
基于自适应分区的 SDDP 算法,用于具有固定资源的多级随机线性规划
- DOI:10.1007/s10589-021-00323-1
- 发表时间:2021
- 期刊:
- 影响因子:2.2
- 作者:Siddig, Murwan;Song, Yongjia
- 通讯作者:Song, Yongjia
Partition-based decomposition algorithms for two-stage Stochastic integer programs with continuous recourse
- DOI:10.1007/s10479-017-2689-7
- 发表时间:2020-01
- 期刊:
- 影响因子:4.8
- 作者:B. S. Pay;Yongjia Song
- 通讯作者:B. S. Pay;Yongjia Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongjia Song其他文献
Scattering problems for a rectangular crack in a saturated porous material: application of the Chebyshev's functions
饱和多孔材料中矩形裂纹的散射问题:切比雪夫函数的应用
- DOI:
10.1080/17455030.2021.1895453 - 发表时间:
2021-03 - 期刊:
- 影响因子:0
- 作者:
Yongjia Song;Hengshan Hu;Jun Wang;Yongxin Gao - 通讯作者:
Yongxin Gao
Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics
基于马尔可夫链的多阶段随机整数线性规划策略及其在救灾物流中的应用
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Margarita P. Castro;Merve Bodur;Yongjia Song - 通讯作者:
Yongjia Song
An Adaptive Sequential Sample Average Approximation Framework for Solving Two-stage Stochastic Programs
求解两阶段随机规划的自适应序列样本平均逼近框架
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
R. Pasupathy;Yongjia Song - 通讯作者:
Yongjia Song
Seismic attenuation and dispersion in a cracked porous medium: An effective medium model based on poroelastic linear slip conditions
裂纹多孔介质中的地震衰减和弥散:基于多孔弹性线性滑移条件的有效介质模型
- DOI:
10.1016/j.mechmat.2019.103229 - 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
Yongjia Song;Hengshan Hu;Bo Han - 通讯作者:
Bo Han
A multi‐vehicle covering tour problem with speed optimization
具有速度优化的多车辆覆盖巡游问题
- DOI:
10.1002/net.22041 - 发表时间:
2019 - 期刊:
- 影响因子:2.1
- 作者:
J. Margolis;Yongjia Song;S. Mason - 通讯作者:
S. Mason
Yongjia Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongjia Song', 18)}}的其他基金
An Integrated Housing Design and Logistics Operations Modeling and Analysis Framework for Hurricane Relief
飓风救援的综合住房设计和物流运营建模与分析框架
- 批准号:
2053660 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
CAREER: An Adaptive Stochastic Look-ahead Framework for Disaster Relief Logistics under Forecast Uncertainty
职业生涯:预测不确定性下救灾物流的自适应随机前瞻框架
- 批准号:
2045744 - 财政年份:2021
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
- 批准号:
1562245 - 财政年份:2016
- 资助金额:
$ 8.49万 - 项目类别:
Standard Grant
相似国自然基金
基于联邦学习和领域自适应的多中心肝脏病灶检测与分割研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度几何先验学习和无监督领域自适应的腹部CT多器官精准分割方法研究
- 批准号:12101571
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于增量学习的自适应视频目标分割方法研究
- 批准号:
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
基于自适应信息融合策略的PET/CT肿瘤共分割算法研究
- 批准号:61901074
- 批准年份:2019
- 资助金额:23.5 万元
- 项目类别:青年科学基金项目
基于曲率信息的乘性噪声图像自适应恢复与分割算法研究与应用
- 批准号:61807029
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Movie-based wavefront control of multi-aperture optics for high-resolution remote sensing
用于高分辨率遥感的多孔径光学器件的基于电影的波前控制
- 批准号:
23K13346 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Three-Dimensional Diffusion Measurement near the Fluid-Solid Interfacial Boundary based on an Advanced Particle Tracking using Total Internal Reflection
基于使用全内反射的高级粒子跟踪的流固界面边界附近的三维扩散测量
- 批准号:
23K03664 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Image Segmentation Based on Deep Learning and Prior Knowledge
基于深度学习和先验知识的图像分割
- 批准号:
23K16907 - 财政年份:2023
- 资助金额:
$ 8.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tobacco-based Sustainable Squalene for Novel Vaccine Adjuvant Emulsions
用于新型疫苗佐剂乳液的基于烟草的可持续角鲨烯
- 批准号:
10545289 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Crack Prediction Method of Blast Furnace Slag Cement Concrete by using Nitrite-based Accelerator
亚硝酸盐速凝剂高炉矿渣水泥混凝土裂缝预测方法
- 批准号:
22K04254 - 财政年份:2022
- 资助金额:
$ 8.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)