CAREER: An Adaptive Stochastic Look-ahead Framework for Disaster Relief Logistics under Forecast Uncertainty

职业生涯:预测不确定性下救灾物流的自适应随机前瞻框架

基本信息

  • 批准号:
    2045744
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will contribute to the advancement of national health, prosperity and welfare by contributing new knowledge on effective disaster relief logistics operations for advance-notice natural disasters such as hurricanes and slow-moving storms. Improved disaster relief efforts can both alleviate human suffering and reduce economic loss. Current disaster relief logistics planning and operations do not effectively incorporate evolving weather forecasts and natural hazard analysis tools. This project will address this shortcoming by creating adaptive decision-support methods for effectively staging and utilizing scarce resources, leveraging both real-time forecast information and historical data. This project will foster a long-term collaboration between the operations research community and emergency management agencies by designing novel logistics decision support tools. The accompanying educational program aims to enrich engineering curriculum with data-driven analytic tools, create interdisciplinary research opportunities, and develop outreach activities for K-12 students and the general public to help them understand the role of operations research in addressing critical societal challenges such as disaster relief logistics.This research will contribute a holistic modeling and algorithmic framework for sequential decision making in disaster relief logistics planning and operations under dynamically evolving disaster situations and their rolling forecasts. This project will: (i) establish new theory to understand the impact of evolving forecast uncertainty on the quality of the decision policy induced by past forecast information; (ii) produce novel algorithms that integrate offline and online stochastic programming models using adaptive sampling, state space approximation, and stage approximation within a rolling-horizon procedure; and (iii) create and analyze novel structured decision policies to address the need to coordinate the timing of various logistics operations with heterogeneous modalities. The modeling and solution methodology on disaster relief logistics operations planning will be validated using both historical data on past hurricanes and simulation data. Research results will help engage and inform emergency managers in making logistics planning and operational policies that balance between adaptability, optimality and executability in practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展计划(CAREER)赠款将通过为预先通知的自然灾害(例如飓风和缓慢移动的风暴)提供有关有效救灾后勤运作的新知识,为促进国家健康、繁荣和福利做出贡献。加强救灾工作既可以减轻人类痛苦,又可以减少经济损失。当前的救灾后勤规划和运营并未有效地将不断变化的天气预报和自然灾害分析工具结合起来。该项目将通过创建自适应决策支持方法来解决这一缺点,以有效地分阶段和利用稀缺资源,同时利用实时预测信息和历史数据。 该项目将通过设计新颖的物流决策支持工具,促进运筹学界和应急管理机构之间的长期合作。随附的教育计划旨在通过数据驱动的分析工具丰富工程课程,创造跨学科研究机会,并为 K-12 学生和公众开展外展活动,帮助他们了解运筹学在解决关键社会挑战中的作用,例如救灾物流。这项研究将为动态变化的灾害情况及其滚动预测下的救灾物流规划和运营中的顺序决策提供整体建模和算法框架。该项目将:(i)建立新的理论来理解不断变化的预测不确定性对过去预测信息引起的决策政策质量的影响; (ii) 产生新颖的算法,使用自适应采样、状态空间近似和滚动范围过程中的阶段近似来集成离线和在线随机编程模型; (iii) 创建和分析新颖的结构化决策政策,以满足协调具有异构模式的各种物流业务的时间安排的需要。将使用过去飓风的历史数据和模拟数据来验证救灾物流运营规划的建模和解决方法。研究结果将有助于应急管理人员制定后勤规划和运营政策,在实践中平衡适应性、最优性和可执行性,并为其提供信息。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated Hurricane Relief Logistics and Evacuation Planning under Forecast Uncertainty: A Case Study for Hurricane Florence
预测不确定性下的综合飓风救援物流和疏散规划:佛罗伦萨飓风案例研究
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongjia Song其他文献

Scattering problems for a rectangular crack in a saturated porous material: application of the Chebyshev's functions
饱和多孔材料中矩形裂纹的散射问题:切比雪夫函数的应用
  • DOI:
    10.1080/17455030.2021.1895453
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongjia Song;Hengshan Hu;Jun Wang;Yongxin Gao
  • 通讯作者:
    Yongxin Gao
Markov Chain-based Policies for Multi-stage Stochastic Integer Linear Programming with an Application to Disaster Relief Logistics
基于马尔可夫链的多阶段随机整数线性规划策略及其在救灾物流中的应用
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Margarita P. Castro;Merve Bodur;Yongjia Song
  • 通讯作者:
    Yongjia Song
Seismic attenuation and dispersion in a cracked porous medium: An effective medium model based on poroelastic linear slip conditions
裂纹多孔介质中的地震衰减和弥散:基于多孔弹性线性滑移条件的有效介质模型
  • DOI:
    10.1016/j.mechmat.2019.103229
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Yongjia Song;Hengshan Hu;Bo Han
  • 通讯作者:
    Bo Han
An Adaptive Sequential Sample Average Approximation Framework for Solving Two-stage Stochastic Programs
求解两阶段随机规划的自适应序列样本平均逼近框架
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Pasupathy;Yongjia Song
  • 通讯作者:
    Yongjia Song
A multi‐vehicle covering tour problem with speed optimization
具有速度优化的多车辆覆盖巡游问题
  • DOI:
    10.1002/net.22041
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    J. Margolis;Yongjia Song;S. Mason
  • 通讯作者:
    S. Mason

Yongjia Song的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongjia Song', 18)}}的其他基金

An Integrated Housing Design and Logistics Operations Modeling and Analysis Framework for Hurricane Relief
飓风救援的综合住房设计和物流运营建模与分析框架
  • 批准号:
    2053660
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
  • 批准号:
    1854960
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
An Adaptive Partition-based Approach for Solving Large-Scale Stochastic Programs
一种求解大规模随机规划的自适应划分方法
  • 批准号:
    1562245
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机信号自适应稀疏表示理论的数据加密算法研究
  • 批准号:
    62306113
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
带有输入时滞的乘性噪声随机系统自适应优化控制
  • 批准号:
    62303284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
随机波浪激励下商船波能利用装置自适应变阻尼俘能机理研究
  • 批准号:
    52371370
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于自适应动态规划的随机系统脉冲控制器高效率设计与实现
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合函数模型和随机模型误差的自适应滤波平滑方法研究
  • 批准号:
    42271461
  • 批准年份:
    2022
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
  • 批准号:
    10677935
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Temporally Adaptive Stochastic Gradient Descent (TASGD)
时间自适应随机梯度下降 (TASGD)
  • 批准号:
    572648-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    University Undergraduate Student Research Awards
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
  • 批准号:
    RGPIN-2021-02625
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了