CAREER: Thermal stability and scaling of nanoscale spin-electronic devices based on novel inverse-Heusler alloys
职业:基于新型逆赫斯勒合金的纳米级自旋电子器件的热稳定性和缩放
基本信息
- 批准号:1846829
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many high-tech gadgets from smartphones to laptops employ nanoscale electronic switches for their functionality that rely exclusively on the charge property of the electron. The electron also has another intrinsic property, called spin, which is intuitively analogous to a spinning ball of charge. In the area of spin-electronics, or spintronics, the spin property of electron is exploited to make new devices. For example, the read-head sensor in magnetic hard-disk drives is a spintronic device. The next technology step for spintronics is to realize a spin-switch where the added benefit of non-volatility will be novel compared to charge-based technologies. But several performance-related parameters require significant improvement in order to achieve a nanoscale spin-switch with long lifetime and high energy-efficiency. One approach is to modify the material components inside spintronic devices to address the challenges. Such is the objective of the research plan. Several pre-identified novel magnetic materials and their combinations will be implemented in an advanced spintronic device using thin-film growth and nanoscale device fabrication techniques. The nanoscale spin devices will be characterized for their switching, scaling, energy-efficiency, and speed characteristics to test the feasibility of the materials. Successful implementation of the research plan has the potential for a high payoff and lead to energy-efficient spin-devices. A broad-based training and education of several graduate, undergraduate, and high school students will be accomplished in materials, device physics and device design, fabrication and characterization. The program will actively focus on promoting interest in science, technology and engineering disciplines among undergraduates and local high school students through several synergistic outreach efforts within the local southern Illinois area.Spintronics is recognized as a promising technology to address the scaling problems of current semiconductor devices. In emergent Spin-Transfer Torque Random-Access Memory, parameters such as thermal stability and switching current density, in addition to ON/OFF ratio, are important for such technologies to be viable below the 20 nm node. In this proposal, several new material combinations will be investigated in spin device configurations to directly address the challenging issues of spintronics technology. Several inverse-Heuslers magnetic materials that show perpendicular magnetic anisotropy and high spin-polarization will be investigated. Magnetic Tunnel Junction and Spin-transfer Torque devices will be designed, fabricated and tested for their ON/OFF ratio, switching current/efficiency, and thermal stability. In the initial phase, the tunnel magnetoresistance properties will be tested on micron-scale devices to establish the viability of the various materials combinations. In the second phase of the project, devices will be tested down to sub-20 nm level to investigate the scaling behavior of all relevant parameters. Nanoscale manipulation of spins in a device geometry will be conducted using shape anisotropy. Synergistic interface characterization of fundamental magnetic properties will be accomplished using synchrotron radiation at various national lab facilities. Successful implementation of project goals can lead to greater integration of spintronics technologies into current semiconductor devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从智能手机到笔记本电脑的许多高科技小工具都采用纳米级电子开关的功能,这些开关仅依赖于电子的电荷属性。 电子还具有另一个称为自旋的内在特性,它与旋转电荷球直觉上类似。在自旋电子或旋转的区域中,电子的自旋特性被利用以制造新设备。例如,磁性硬盘驱动器中的读力头传感器是一种自旋装置。 Spintronics的下一个技术步骤是实现一种自旋开关,与基于电荷的技术相比,非挥发性的额外好处将是新颖的。但是,几个与性能相关的参数需要显着改进,以实现长寿命和高能效的纳米级自旋开关。一种方法是修改自旋设备内部内部的材料组件以应对挑战。这就是研究计划的目标。几种预识别的新型磁性材料及其组合将使用薄膜生长和纳米级设备制造技术在高级自旋装置中实现。纳米级旋转设备的开关,缩放,能效和速度特性将以测试材料的可行性进行特征。成功实施研究计划有可能获得高收益并导致节能旋转设备。对几个研究生,本科生和高中生的广泛培训和教育将在材料,设备物理和设备设计,制造和表征上完成。该计划将通过在伊利诺伊州南部地区的几项协同宣传工作中积极专注于在本科生和当地高中生中对科学,技术和工程学科的兴趣。Spintronics被认为是解决当前半导体设备的扩展问题的有前途的技术。 在紧急的自旋转移扭矩随机存储器中,除了ON/OFF比率之外,诸如热稳定性和开关电流密度之类的参数对于此类技术的可行性很重要。在此提案中,将在旋转设备配置中调查几种新的材料组合,以直接解决SpinTronics技术的具有挑战性的问题。 将研究几种显示垂直磁各向异性和高自旋极化的磁性材料。将设计,制造和测试磁性隧道连接器和自旋转移扭矩设备的开/关,开关电流/效率和热稳定性。在初始阶段,将在微米尺度设备上测试隧道磁磁性特性,以确定各种材料组合的可行性。在项目的第二阶段中,将测试设备至20 nm级别,以研究所有相关参数的缩放行为。将使用形状各向异性进行装置几何形状中旋转的纳米级操纵。将使用各种国家实验室设施的同步加速器辐射来实现基本磁性特性的协同界面表征。成功实施项目目标可以导致将Spintronics技术更大的整合到当前的半导体设备中。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来提供支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mn2FeSi: An antiferromagnetic inverse-Heusler alloy
- DOI:10.1016/j.jallcom.2020.153770
- 发表时间:2020-05-15
- 期刊:
- 影响因子:6.2
- 作者:Aryal, Anil;Bakkar, Said;Mazumdar, Dipanjan
- 通讯作者:Mazumdar, Dipanjan
Topological properties of multilayer magnon insulators
- DOI:10.1103/physrevb.104.064427
- 发表时间:2020-08
- 期刊:
- 影响因子:3.7
- 作者:S. Hofer;T. Datta;S. Tewari;D. Mazumdar
- 通讯作者:S. Hofer;T. Datta;S. Tewari;D. Mazumdar
Influence of post-deposition annealing on the transport properties of sputtered Bi2Se3 thin films
- DOI:10.1016/j.tsf.2021.138676
- 发表时间:2021-04
- 期刊:
- 影响因子:2.1
- 作者:Y. Sapkota;D. Mazumdar
- 通讯作者:Y. Sapkota;D. Mazumdar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dipanjan Mazumdar其他文献
Dipanjan Mazumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
- 批准号:12371393
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
多级吸附材料串联耦合对吸附储热反应床稳定输出的调控机制
- 批准号:52306234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阻燃三维集流体/人造保护层的热稳定钠(钾)金属负极设计构筑及其调控枝晶生长动力学研究
- 批准号:52302085
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磷-硅协同强化生物质热解固碳及焦炭稳定性的耦合调控机制研究
- 批准号:52376215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于随机动力系统理论的热声不稳定机理及其最优控制策略研究
- 批准号:12372030
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote ecosystem stability in response to drought
NSFDEB-NERC:变暖的一线希望?
- 批准号:
NE/Y00549X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312707 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Studentship
Thermal stability and quench protection of prctical high temerature superconducting materials and magnets
实用高温超导材料及磁体的热稳定性及失超保护
- 批准号:
22KF0040 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for JSPS Fellows