CAREER: Cationic Chemical Vapor Deposition of Lithium Battery Gel Electrolytes
职业:锂电池凝胶电解质的阳离子化学气相沉积
基本信息
- 批准号:1845805
- 负责人:
- 金额:$ 52.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The use of advanced lithium-ion batteries for vehicle transport and renewable electricity grid storage applications could improve domestic energy security, but their use is limited by high cost and limited battery lifetime. The main cause of battery failure is undesirable chemical side reactions within the device that are difficult to quantify and to understand. Because of this lack of fundamental understanding, engineers are less able to design materials and devices that can withstand side reactions for longer times. In advanced battery designs such as hybrid lithium batteries, gel electrolytes have been favored because they allow high liquid-like conductivities of conventional electrolytes yet favorable mechanical properties and enhanced safety like solid polymer electrolytes. This CAREER project will conduct fundamental research on polymer processing methods to efficiently deposit gel electrolytes inside a battery's porous electrode to form thin protective coatings that improve resistance to unwanted side reactions and provide structural stability. Beyond electrochemical energy storage applications, these studies will enable scalable, rapid polymer depositions that have general relevance in many other applications such as corrosion protection coatings, barrier and dielectric layers, and optical coatings. As educational benefits, this project will train student researchers in critical thinking skills, and in the disciplines of reaction engineering, polymer science, advanced semiconductor processing, and electrochemical energy storage. The PI has also partnered with the Rochester City Public District to introduce chemical engineering principles to high school students using interactive service-learning inspired projects.The polymer chemical vapor deposition (CVD) process in this project is based on heterogeneous cationic polymerizations. The central hypothesis is that strong acid molecules, which are introduced into the deposition chamber as vapor-phase precursors, react with surface-adsorbed vinyl monomers, generating carbenium ions that then undergo polymerization. The overarching research objective is to understand the fundamental transport and reaction processes that constitute cationic polymer CVD in order to establish synthetic and morphological control of polymer gel electrolytes deposited within porous lithium ion battery electrodes. This project is divided into two thrusts, where the first thrust seeks to establish the reaction mechanism and understand the material properties of the deposited films. The second thrust will research the processing conditions that effectively balance the rate of surface reaction with mass transport to achieve conformal coatings inside porous structures. Novel gel electrolyte materials will be synthesized within electrode porosity using cationic CVD. These two thrusts are highly integrated and will be conducted in concert to discern structure-property relationships and the effects of processing conditions in these novel gel materials. To establish foundational understanding of the gels' electrochemical behavior in relevant lithium ion battery cells, electrochemical characterization of the gels is emphasized including Li ion transport and oxidative stability. Initially, the gel electrolyte composition will be based on crosslinked poly(vinyl pyrrolidone) swollen in conventional alkyl carbonate liquid electrolytes. Over a longer term as both the project and energy storage field advance, additional novel gel compositions will be developed to address material challenges in future lithium battery technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将先进的锂离子电池用于车辆运输和可再生电网存储应用可以改善国内能源安全,但其使用受到高成本和有限的电池寿命的限制。电池故障的主要原因是设备内发生难以量化和理解的不良化学副反应。由于缺乏基本的了解,工程师们不太能够设计出能够长时间承受副反应的材料和设备。在混合锂电池等先进电池设计中,凝胶电解质受到青睐,因为它们具有传统电解质的高液体电导率,同时又像固体聚合物电解质一样具有良好的机械性能和增强的安全性。该职业项目将对聚合物加工方法进行基础研究,以有效地将凝胶电解质沉积在电池的多孔电极内,形成薄的保护涂层,从而提高对不需要的副反应的抵抗力并提供结构稳定性。除了电化学储能应用之外,这些研究还将实现可扩展、快速的聚合物沉积,这些沉积在许多其他应用中具有普遍意义,例如防腐蚀涂层、阻挡层和介电层以及光学涂层。作为教育效益,该项目将培训学生研究人员的批判性思维技能以及反应工程、聚合物科学、先进半导体加工和电化学储能等学科。该 PI 还与罗彻斯特市公共区合作,通过互动服务学习项目向高中生介绍化学工程原理。该项目中的聚合物化学气相沉积 (CVD) 工艺基于非均相阳离子聚合。中心假设是,作为气相前体引入沉积室的强酸分子与表面吸附的乙烯基单体发生反应,产生碳正离子,然后进行聚合。总体研究目标是了解构成阳离子聚合物 CVD 的基本传输和反应过程,以便建立沉积在多孔锂离子电池电极内的聚合物凝胶电解质的合成和形态控制。该项目分为两个重点,第一个重点旨在建立反应机制并了解沉积薄膜的材料特性。第二个重点将研究有效平衡表面反应速率与质量传输的加工条件,以在多孔结构内实现保形涂层。新型凝胶电解质材料将使用阳离子 CVD 在电极孔隙内合成。这两个方向高度集成,将协同进行,以辨别这些新型凝胶材料的结构-性能关系以及加工条件的影响。为了建立对相关锂离子电池中凝胶电化学行为的基础了解,强调了凝胶的电化学表征,包括锂离子传输和氧化稳定性。最初,凝胶电解质组合物将基于在常规碳酸烷基酯液体电解质中溶胀的交联聚(乙烯基吡咯烷酮)。从长远来看,随着该项目和储能领域的进步,将开发出更多新型凝胶组合物,以解决未来锂电池技术中的材料挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识产权进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stretchable, Transparent, Permeation Barrier Layer for Flexible Optics
- DOI:10.1002/adom.202100334
- 发表时间:2021-04
- 期刊:
- 影响因子:9
- 作者:Yineng Zhao;Ni Huo;S. Ye;A. Boromand;A. Ouderkirk;W. Tenhaeff
- 通讯作者:Yineng Zhao;Ni Huo;S. Ye;A. Boromand;A. Ouderkirk;W. Tenhaeff
Synthesis of High Refractive Index Polymer Thin Films for Soft, Flexible Optics Through Halomethane Quaternization of Poly(4‐Vinylpyridine)
- DOI:10.1002/adom.202302201
- 发表时间:2024-01
- 期刊:
- 影响因子:9
- 作者:Ni Huo;Jeremy Rivkin;Ruobin Jia;Yineng Zhao;W. Tenhaeff
- 通讯作者:Ni Huo;Jeremy Rivkin;Ruobin Jia;Yineng Zhao;W. Tenhaeff
Determining the Absolute Anodic Stability Threshold of Polymer Electrolytes: A Capacity-Based Electrochemical Method
- DOI:10.1021/acs.chemmater.0c04248
- 发表时间:2021-03-03
- 期刊:
- 影响因子:8.6
- 作者:Li, Zhuo;Zhao, Yineng;Tenhaeff, Wyatt E.
- 通讯作者:Tenhaeff, Wyatt E.
Mechanically and Thermally Robust Microporous Copolymer Separators for Lithium Ion Batteries
- DOI:10.1016/j.electacta.2022.140705
- 发表时间:2022-06
- 期刊:
- 影响因子:6.6
- 作者:Alexander J. Manly;W. Tenhaeff
- 通讯作者:Alexander J. Manly;W. Tenhaeff
Elastic broadband antireflection coatings for flexible optics using multi-layered polymer thin films
使用多层聚合物薄膜的柔性光学器件的弹性宽带减反射涂层
- DOI:10.1039/d3tc00104k
- 发表时间:2023
- 期刊:
- 影响因子:6.4
- 作者:Zhao, Yineng;Huo, Ni;Ye, Sheng;Tenhaeff, Wyatt E.
- 通讯作者:Tenhaeff, Wyatt E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wyatt Tenhaeff其他文献
Wyatt Tenhaeff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wyatt Tenhaeff', 18)}}的其他基金
MRI: Acquisition of a variable angle spectroscopic ellipsometer
MRI:获取可变角度光谱椭偏仪
- 批准号:
1827904 - 财政年份:2018
- 资助金额:
$ 52.88万 - 项目类别:
Standard Grant
Solid Polymer Thin Film Electrolytes to Enable 3D Lithium Ion Batteries
固体聚合物薄膜电解质可实现 3D 锂离子电池
- 批准号:
1604471 - 财政年份:2016
- 资助金额:
$ 52.88万 - 项目类别:
Standard Grant
相似国自然基金
阳离子空位和过渡金属原子协同调控RuO2电催化剂酸性电化学析氧反应机理的同步辐射研究
- 批准号:12305364
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三维石墨烯基复合材料电吸附耦合电化学反应机制选择性分离去除污水中的阴阳离子
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维铜硫族化合物的阴阳离子化学调控与电化学储镁特性
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
钠离子电池锰基混合阳离子NASICON型正极材料的结构调控与电化学性能研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
电化学辅助阳离子掺杂改性金属氧化物及其铀吸附机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 52.88万 - 项目类别:
Roles of novel cationic lipids in bacterial pathogenesis
新型阳离子脂质在细菌发病机制中的作用
- 批准号:
10732462 - 财政年份:2023
- 资助金额:
$ 52.88万 - 项目类别:
Cationic CAMKIIN nanoparticles that reduce chlorine-induced airway oxidative stress
阳离子 CAMKIIN 纳米颗粒可减少氯诱导的气道氧化应激
- 批准号:
10408405 - 财政年份:2022
- 资助金额:
$ 52.88万 - 项目类别:
Development of Sulfonium- and Phosphonium-based Cationic Lipid Materials for mRNA Delivery
用于 mRNA 递送的锍基和鏻基阳离子脂质材料的开发
- 批准号:
10621165 - 财政年份:2022
- 资助金额:
$ 52.88万 - 项目类别:
Development of Sulfonium- and Phosphonium-based Cationic Lipid Materials for mRNA Delivery
用于 mRNA 递送的锍基和鏻基阳离子脂质材料的开发
- 批准号:
10353680 - 财政年份:2022
- 资助金额:
$ 52.88万 - 项目类别: