CAREER: Participatory Design Methods for Algorithmic Systems
职业:算法系统的参与式设计方法
基本信息
- 批准号:1844901
- 负责人:
- 金额:$ 54.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research will develop methods for applying participatory design to the underlying components of algorithmic systems. Such systems incorporate increasingly complex algorithms from machine learning (ML), natural language processing (NLP), and related areas into user interactions, intending to achieve great benefits. However, cases of egregious errors, algorithmic bias, and other issues have revealed the shortcomings of relying primarily on quantitative performance metrics to inform design. A potential solution is to incorporate users into the design process. Although human-computer interaction research has developed numerous methods for user-centered design, many such approaches focus primarily at the interface level. This focus becomes problematic when a system's functionality is increasingly determined by ML models and algorithms. Furthermore, designing only for users of algorithmic systems can overlook other important relationships, such as the people whose data are being analyzed or those who may interpret the results. To address these issues, this research will develop participatory methods for human-centered design of algorithmic systems. These methods will be developed and tested by working closely with two non-profit organizations that already engage in data-intensive work but currently make limited use of algorithmic systems: AEquitas, which conducts legal analysis, and ProPublica, an investigative journalism newsroom. Unique challenges emerge when attempting to incorporate different people's relationships with a system into the design process. Existing participatory methods often use visual elements or manipulatives to represent interface components. The abstract mathematical formalisms of algorithmic systems, though, do not always lend themselves to such visual representations. This research will develop novel participatory design techniques to establish common ground between domain experts, who are less familiar with ML or NLP, and researchers, who are unfamiliar with the application domain. Doing so can leverage diverse participants' expertise and interpretations, thereby improving the fit between computational systems and existing practices. The participatory methods directly address underlying technical components, from feature selection, to model construction, to performance evaluation, to result interpretation. Furthermore, these methods will align those underlying technical aspects with current practices and lay understandings, increase the chance of catching and rectifying unanticipated egregious errors before they become problematic, and ensure the results are presented in a transparent and accountable manner. Finally, this process will inform the development of modules for classroom instruction, paired across STEM and social science courses, on how to incorporate human-centered concerns into designing algorithmic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将开发用于将参与设计应用于算法系统的基本组件的方法。此类系统将机器学习(ML),自然语言处理(NLP)及相关领域的越来越复杂的算法纳入用户互动中,以实现巨大的好处。但是,严重错误,算法偏见和其他问题的案例揭示了主要依赖定量性能指标来告知设计的缺点。潜在的解决方案是将用户纳入设计过程。尽管人类计算机的互动研究开发了许多以用户为中心的设计的方法,但许多这样的方法主要集中在接口级别上。当系统的功能越来越多地由ML模型和算法确定时,该重点就会成为问题。此外,仅针对算法系统的用户设计可以忽略其他重要关系,例如正在分析数据的人或可以解释结果的人。为了解决这些问题,这项研究将开发以人为中心的算法系统设计的参与式方法。 这些方法将通过与已经从事数据密集型工作但目前对算法系统的有限使用的非营利组织紧密合作来开发和测试,而进行法律分析的Aequitas和调查新闻室ProPublica。当试图将不同的人的关系与系统融合到设计过程中时,出现了独特的挑战。现有的参与方法通常使用视觉元素或操纵词来表示界面组件。不过,算法系统的抽象数学形式主义并不总是能够以这种视觉表示。这项研究将开发新颖的参与设计技术,以在不熟悉ML或NLP的领域专家和不熟悉应用领域的研究人员之间建立共同点。这样做可以利用不同参与者的专业知识和解释,从而改善计算系统与现有实践之间的拟合度。参与式方法直接解决了从特征选择到模型构造,到绩效评估,再到结果解释的基本技术组成部分。此外,这些方法将使那些潜在的技术方面与当前的实践保持一致,并提出理解,增加在问题之前捕获和纠正意外的严重错误的机会,并确保以透明且负责任的方式提出结果。最后,此过程将为课堂教学模块的发展提供介绍,包括STEM和社会科学课程,如何将以人为中心的关注纳入设计算法系统中。该奖项反映了NSF的法定任务,并认为通过基金会的知识和更广泛的影响,可以通过评估来进行评估,以审查Criteria。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topicalizer: reframing core concepts in machine learning visualization by co-designing for interpretivist scholarship
Topicalizer:通过解释主义学术的共同设计重新构建机器学习可视化的核心概念
- DOI:10.1080/07370024.2020.1734460
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baumer, Eric P.;Siedel, Drew;McDonnell, Lena;Zhong, Jiayun;Sittikul, Patricia;McGee, Micki
- 通讯作者:McGee, Micki
Where Do Stories Come From? Examining the Exploration Process in Investigative Data Journalism
故事从何而来?
- DOI:10.1145/3479534
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Showkat, Dilruba;Baumer, Eric P.
- 通讯作者:Baumer, Eric P.
Evaluating Design Fiction: The Right Tool for the Job
评估设计小说:适合工作的正确工具
- DOI:10.1145/3357236.3395464
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baumer, Eric P.;Blythe, Mark;Tanenbaum, Theresa Jean
- 通讯作者:Tanenbaum, Theresa Jean
“It’s Like the Value System in the Loop”: Domain Experts’ Values Expectations for NLP Automation
– 就像循环中的价值系统 –:领域专家 – 重视对 NLP 自动化的期望
- DOI:10.1145/3532106.3533483
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Showkat, Dilruba;Baumer, Eric P.
- 通讯作者:Baumer, Eric P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Baumer其他文献
Social Trust, Firearm Prevalence, and Homicide
- DOI:
10.1016/j.annepidem.2006.07.016 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:
- 作者:
Richard Rosenfeld;Eric Baumer;Steven F. Messner - 通讯作者:
Steven F. Messner
Immigrant Threat or Institutional Context? Examining Police Agency and County Context and the Implementation of the 287(g) Program
移民威胁还是制度背景?
- DOI:
10.1080/00380253.2024.2304335 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bianca Wirth;Eric Baumer - 通讯作者:
Eric Baumer
Missing Photos, Suffering Withdrawal, or Finding Freedom? How Missing Photos, Suffering Withdrawal, or Finding Freedom? How Experiences of Social Media Non-Use Influence the Likelihood of Experiences of Social Media Non-Use Influence the Likelihood of Reversion Reversion
丢失照片、遭受退缩之苦,还是寻找自由?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Eric Baumer;Shion Guha;Emily Quan;David Mimno;Geri K. Gay - 通讯作者:
Geri K. Gay
Eric Baumer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Baumer', 18)}}的其他基金
HCC Core: Medium: Making Meaning out of Crisis: Mixed-Methods Investigation into the Nature and Impact of Framing Processes During the COVID-19 Pandemic
HCC 核心:中:危机的意义:对 COVID-19 大流行期间框架过程的性质和影响的混合方法调查
- 批准号:
2212265 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Collaborative Research: A National Assessment of Victimization Risk and Crime Reporting
合作研究:受害风险和犯罪报告的全国评估
- 批准号:
1917952 - 财政年份:2019
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Algorithms Everywhere: Identifying and Designing for Data Privacy Styles
SaTC:核心:小型:协作:算法无处不在:数据隐私风格的识别和设计
- 批准号:
1814533 - 财政年份:2018
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Tools for Mental Health Reflection: Integrating Social Media with Human-Centered Machine Learning
CHS:小型:协作研究:心理健康反思工具:社交媒体与以人为本的机器学习相结合
- 批准号:
1814909 - 财政年份:2018
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
Collaborative Research: Crime Risk and Police Notification
合作研究:犯罪风险和警方通知
- 批准号:
1625698 - 财政年份:2016
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
A Temporal and Spatial Analysis of Gender, Race, and Ethnic Disparities in the Probability of Incarceration
监禁概率中性别、种族和民族差异的时空分析
- 批准号:
0921369 - 财政年份:2009
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Community Variation in the Disposition of Criminal Cases: The Role of Social, Cultural, and Political Context
刑事案件处理中的社区差异:社会、文化和政治背景的作用
- 批准号:
0451848 - 财政年份:2005
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
相似国自然基金
排污权二级交易市场企业参与行为及引导性机制优化设计研究
- 批准号:72104071
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大型公共建筑设计方案可持续性评价与比选机制探究——基于PDM理念及BIM技术
- 批准号:71501074
- 批准年份:2015
- 资助金额:18.5 万元
- 项目类别:青年科学基金项目
参与人可以随机进入下的竞争博弈:均衡存在性分析与机制设计
- 批准号:71401186
- 批准年份:2014
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
地下工程施工中参与者行为管理制度有效性研究
- 批准号:51374165
- 批准年份:2013
- 资助金额:69.0 万元
- 项目类别:面上项目
联烯和手性联烯中间体参与的原子经济性串联反应设计和研究
- 批准号:21302095
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Michigan Institute for Clinical and Health Research (MICHR)
密歇根临床与健康研究所 (MICHR)
- 批准号:
10621051 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Dual-Language Communication and Social-Cognitive Skills in Bilingual Children with ASD
双语自闭症儿童的双语沟通和社交认知技能
- 批准号:
10591041 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Factors influencing positive change in glycemic control and Type 2 diabetes self-management behavior among Latinx individuals in a digital storytelling intervention: A mixed-methods study
在数字讲故事干预中影响拉丁裔个体血糖控制和 2 型糖尿病自我管理行为积极变化的因素:一项混合方法研究
- 批准号:
10675951 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别: