CAREER: Enabling Efficient Separation of Rare-Earth Elements Using Liquid-Metal Bipolar Membranes
职业:使用液态金属双极膜实现稀土元素的有效分离
基本信息
- 批准号:1844170
- 负责人:
- 金额:$ 50.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rare-earth materials are components of renewable energy technologies such as permanent magnet motors for wind turbines and electric vehicles. Despite the critical role of rare-earth materials in the transition to a low-carbon economy, less than 1% of the rare earths are currently recycled. The projected increase in demand for rare earths over the next decade will outpace supply from mined ore. The development of efficient and environmentally-friendly rare-earth recycling techniques is essential for future deployment of clean energy technologies. The goal of this project is to develop an efficient rare-earth element separation using liquid metals as a selective barrier (i.e., a bipolar membrane) that allows rare-earth elements, but not other elements, to pass through when a voltage is applied. This study will test the hypothesis that strong chemical interactions between liquid metals and rare-earth elements will enhance the passage of the rare-earth elements through the bipolar membrane. If successful, the liquid-metal bipolar membrane will provide a way to recycle rare-earth materials from end-of-life products through direct separation in a single electrochemical cell. This will broadly benefit society by reducing the environmental burden associated with rare-earth mining and reliance on energy-intensive rare-earth separation technology. Research and education are integrated by engaging students in fields essential to long-term U.S. economic competitiveness, including electrochemical energy storage, materials synthesis, separation of energy-critical materials, and corrosion-resistant coatings. Graduate and undergraduate students' knowledge of electrochemistry will be cultivated through a holistic curriculum that integrates hands-on research experience with targeted coursework. High school students and STEM educators will be engaged through the "Electrochemistry for Materials Sustainability" outreach program. The program aims to introduce non-experts to the field of electrochemistry, cultivating a curiosity about electrochemistry, its role in solving real-world challenges, and motivating the pursuit of STEM careers.The Principal Investigator's long-term career goal is to enable materials sustainability through the development of energy-efficient separation and recycling technologies. Toward this goal, this project investigates a new electrochemical approach for efficient separation of rare-earth elements, utilizing liquid metals as a bipolar membrane that allows for unique electrochemical reactions and mass transport of rare-earth elements across the liquid-metal bipolar membrane under an electric field. The research objectives for this project are to establish the fundamental thermodynamic, interfacial, and transport properties of a liquid-metal bipolar membrane that govern electrochemical selectivity and permeability for rare earths. The outcomes of the project will include highly accurate thermodynamic, interfacial, and transport properties of rare earths, essential for developing liquid-metal bipolar membranes, as well as development of reliable experimental techniques for their measurement. The experimentally-verified properties will be integrated into the development of computational tools (solution models and first-principles calculations) for simulating atomic bonding, phase equilibria, interfacial kinetics, and atomic diffusion. This approach will accelerate the design of liquid-metal bipolar membranes that possess an exceptional selectivity and permeability for rare earths, enhance the predictive capabilities of computational materials modeling, and advance the current knowledge of rare earths. The scientific approaches developed in this project will serve as a general means for the discovery of superior materials with better control over chemical selectivity for other energy-critical materials beyond rare earths.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
稀土材料是可再生能源技术的组成部分,例如风力涡轮机和电动汽车的永磁电机。尽管稀土材料在向低碳经济转型中发挥着关键作用,但目前只有不到 1% 的稀土被回收利用。预计未来十年稀土需求的增长将超过开采矿石的供应。开发高效、环保的稀土回收技术对于未来清洁能源技术的部署至关重要。该项目的目标是开发一种有效的稀土元素分离方法,使用液态金属作为选择性屏障(即双极膜),在施加电压时允许稀土元素通过,但不允许其他元素通过。这项研究将验证液态金属和稀土元素之间的强烈化学相互作用将增强稀土元素通过双极膜的假设。如果成功,液态金属双极膜将提供一种通过在单个电化学电池中直接分离从报废产品中回收稀土材料的方法。这将减少与稀土开采相关的环境负担和对能源密集型稀土分离技术的依赖,从而广泛造福社会。通过让学生参与对美国长期经济竞争力至关重要的领域,包括电化学储能、材料合成、能源关键材料的分离和耐腐蚀涂层,将研究和教育融为一体。研究生和本科生的电化学知识将通过将实践研究经验与有针对性的课程相结合的整体课程来培养。高中生和 STEM 教育工作者将参与“电化学促进材料可持续性”外展计划。该项目旨在向非专家介绍电化学领域,培养对电化学及其在解决现实世界挑战中的作用的好奇心,并激发对 STEM 职业的追求。首席研究员的长期职业目标是实现材料的可持续性通过开发节能分离和回收技术。为了实现这一目标,该项目研究了一种有效分离稀土元素的新电化学方法,利用液态金属作为双极膜,允许稀土元素在液态金属双极膜上发生独特的电化学反应和质量传输。电场。该项目的研究目标是建立液态金属双极膜的基本热力学、界面和传输特性,以控制稀土的电化学选择性和渗透性。该项目的成果将包括稀土的高精度热力学、界面和传输特性,这对于开发液态金属双极膜以及开发可靠的测量实验技术至关重要。经过实验验证的特性将被整合到计算工具(解决方案模型和第一原理计算)的开发中,用于模拟原子键合、相平衡、界面动力学和原子扩散。这种方法将加速对稀土具有卓越选择性和渗透性的液态金属双极膜的设计,增强计算材料建模的预测能力,并推进当前稀土知识的发展。该项目开发的科学方法将作为发现优质材料的通用手段,更好地控制稀土以外的其他能源关键材料的化学选择性。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling
- DOI:10.1016/j.actamat.2021.117448
- 发表时间:2021-10
- 期刊:
- 影响因子:9.4
- 作者:Sang-Moo Im;S. Shang;N. Smith;Adam M Krajewski;T. Lichtenstein;Hui Sun;B. Bocklund;Zi-kui Liu;Hojong Kim
- 通讯作者:Sang-Moo Im;S. Shang;N. Smith;Adam M Krajewski;T. Lichtenstein;Hui Sun;B. Bocklund;Zi-kui Liu;Hojong Kim
Electrochemical recovery of Nd using liquid metals (Bi and Sn) in LiCl-KCl-NdCl3
- DOI:10.1016/j.electacta.2022.140655
- 发表时间:2022-05
- 期刊:
- 影响因子:6.6
- 作者:Sang-Moo Im;N. Smith;Stephanie Castro Baldivieso;Jarrod Gesualdi;Ziming Liu;Hojong Kim
- 通讯作者:Sang-Moo Im;N. Smith;Stephanie Castro Baldivieso;Jarrod Gesualdi;Ziming Liu;Hojong Kim
Two-Phase Rare-Earth Alloys as Reference Electrodes in Molten Chlorides for Reliable Electrochemical Measurements
- DOI:10.1007/978-3-030-92662-5_31
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:N. Smith;Stephanie Castro Baldivieso;T. Lichtenstein;Sang-Moo Im;Hojong Kim
- 通讯作者:N. Smith;Stephanie Castro Baldivieso;T. Lichtenstein;Sang-Moo Im;Hojong Kim
Thermodynamic properties of Gd-Bi alloys determined by emf measurements in LiCl-KCl-GdCl3 electrolyte
通过 LiCl-KCl-GdCl3 电解质中的电动势测量确定 Gd-Bi 合金的热力学性能
- DOI:10.1016/j.jallcom.2021.161229
- 发表时间:2021
- 期刊:
- 影响因子:6.2
- 作者:Baldivieso, Stephanie Castro;Smith, Nathan D.;Im, Sanghyeok;Kim, Hojong
- 通讯作者:Kim, Hojong
Electrochemical Cell Design for Emf Measurements of Liquid Nd-Bi Alloys via Coulombic Titration in LiCl–KCl–NdCl3 Electrolyte
通过 LiCl-KCl-NdCl3 电解质中的库仑滴定测量液态 Nd-Bi 合金电动势的电化学电池设计
- DOI:10.1007/978-3-030-92662-5_30
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Im, S.;Smith, N.D.;Baldivieso, S.C.;Kim, H.
- 通讯作者:Kim, H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hojong Kim其他文献
Rare Metal Technology 2021
稀有金属技术 2021
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Gisele Azimi;Takanari Ouchi;Kerstin Forsberg;Hojong Kim;Shafiq Alam;Alafara Abdullahi Baba;Neale R. Neelameggham - 通讯作者:
Neale R. Neelameggham
Thermodynamic Properties of the Nd-Bi System Via Emf Measurements, DFT Calculations, and CALPHAD Modeling
通过电动势测量、DFT 计算和 CALPHAD 建模了解 Nd-Bi 系统的热力学性质
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Sang;S. Shang;N. Smith;T. Lichtenstein;Hui Sun;Adam M Krajewski;B. Bocklund;Zi;Hojong Kim - 通讯作者:
Hojong Kim
Rare Metal Technology 2022
稀有金属技术 2022
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Takanari Ouchi;Gisele Azimi;Kerstin Forsberg;Hojong Kim;Shafiq Alam;Neale R. Neelameggham;Alafara Abdullahi Baba;Hong Peng - 通讯作者:
Hong Peng
東日本大震災にみられた個々の教訓に対する理解度特性―東北大学MOOC受講者を対象にした事例研究―
对东日本大地震中观察到的个人教训的理解特征 - 以东北大学 MOOC 参与者为对象的案例研究 -
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Takanari Ouchi;Kerstin Forsberg;Gisele Azimi;Shafiq Alam;Neale R. Neelameggham;Hojong Kim;Alafara Abdullahi Baba;Hong Peng;Athanasios Karamalidis;渡邉勇,佐藤翔輔,今村文彦 - 通讯作者:
渡邉勇,佐藤翔輔,今村文彦
Recovery of Alkaline-Earths into Liquid Bi in Ternary LiCl-KCl-SrCl2/BaCl2 Electrolytes at 500 °C
500 °C 三元 LiCl-KCl-SrCl2/BaCl2 电解质中将碱土回收为液态 Bi
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.9
- 作者:
T. Lichtenstein;Thomas P. Nigl;Hojong Kim - 通讯作者:
Hojong Kim
Hojong Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hojong Kim', 18)}}的其他基金
Understanding Alloy Chemistry for Enhanced Environmental Resistance
了解合金化学以增强耐环境性
- 批准号:
1662817 - 财政年份:2017
- 资助金额:
$ 50.19万 - 项目类别:
Standard Grant
相似海外基金
Developing and enabling efficient hypothesis test for response-adaptive design with patient benefit goals
开发并启用有效的假设检验,以实现具有患者利益目标的响应自适应设计
- 批准号:
MR/Z503538/1 - 财政年份:2024
- 资助金额:
$ 50.19万 - 项目类别:
Research Grant
Enabling Innovative Space-driven Services for Energy Efficient Buildings and Climate Resilient Cities
为节能建筑和气候适应型城市提供创新的空间驱动服务
- 批准号:
10063705 - 财政年份:2023
- 资助金额:
$ 50.19万 - 项目类别:
EU-Funded
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 50.19万 - 项目类别:
Standard Grant
I-Corps: Efficient Wireless Power Transfer Technology Enabling Transportation Electrification
I-Corps:高效无线功率传输技术实现交通电气化
- 批准号:
2331538 - 财政年份:2023
- 资助金额:
$ 50.19万 - 项目类别:
Standard Grant
Facilitate hospital discharge, enabling a circle of care with social and healthcare workers, preventing re-hospitalization, an efficient transition into the communities and prescribing need-based services to remain older adult patients at home longer.
促进出院,与社会和医护人员建立循环护理,防止再次住院,有效过渡到社区,并提供基于需求的服务,使老年患者在家中停留更长时间。
- 批准号:
487944 - 财政年份:2023
- 资助金额:
$ 50.19万 - 项目类别:
Miscellaneous Programs