MRI: Acquisition of a GPU Accelerated Vermont Advanced Computing Core

MRI:购买 GPU 加速的 Vermont 高级计算核心

基本信息

项目摘要

This project will enable interdisciplinary science through the acquisition of a high-performance computer cluster, named DeepGreen. Based on cutting-edge massively parallel graphics processing unit (GPU) technologies, DeepGreen will be utilized by the over 300 users from six Colleges at the University of Vermont, and throughout the Northeast. The unique hybrid architecture was designed to optimize artificial intelligence (AI) applications and will allow for rapid progress on problems of great societal importance. They include: quantum computing, drug discovery and design, safe robotics, control of adaptive crop pests, and new computer vision tools for use in the health care and transportation industries. As an example, DeepGreen will allow the training of neural networks on the world's largest brain imaging datasets of illicit drug users, yielding novel health and policy strategies to combat the opioid epidemic. A focus of the scientific and technical team is to broaden the number of personnel able to exploit GPU hardware for problem solving, producing the highly trained and diverse technical workforce required for the current and future AI economy. DeepGreen was designed by a team of experts from the physical, medical, biological, computational, and agricultural sciences, partnered with an experienced group of information technology professionals. It will be capable of over 8 petaflops of mixed precision calculations based on the latest NVIDIA Tesla V100 architecture with a hybrid design allowing high bandwidth message passing across heterogeneous compute nodes. Its extreme parallelism will facilitate research in three interconnected areas: quantum many-body systems, molecular simulation and modeling, and deep learning, artificial intelligence and evolutionary algorithms. DeepGreen will forge transformative research pipelines. It will enable the study of thousands of quantum entangled atoms, and millions of interacting components in biological systems providing insights into structure-function mechanisms. Machine learning and deep neural networks will exploit DeepGreen's Tensor Cores to solve diverse problems. These problems include: the development of coarse grained potentials for use in molecular dynamics simulations, real time dynamic processing of crowd sourced decision making for robotics, genomic sequencing of invasive pests, and feature recognition in medical imaging to distinguish cancerous tumors from benign nodules. Software designed for use on DeepGreen will be released to the public as open source, with other scientists and researchers being able to immediately use and extend it. This project will also support the next generation of data scientists. Training workshops focused on GPU computing and machine learning frameworks, new university courses, and partnerships with existing local NSF-funded graduate training initiatives, will drive broad utilization of DeepGreen.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将通过收购一个名为 DeepGreen 的高性能计算机集群来实现跨学科科学。 基于尖端的大规模并行图形处理单元 (GPU) 技术,DeepGreen 将被来自佛蒙特大学六所学院以及整个东北地区的 300 多名用户使用。独特的混合架构旨在优化人工智能(AI)应用,并将在具有重大社会意义的问题上取得快速进展。它们包括:量子计算、药物发现和设计、安全机器人技术、适应性作物害虫控制以及用于医疗保健和运输行业的新型计算机视觉工具。 例如,DeepGreen 将允许在世界上最大的非法药物使用者的大脑成像数据集上训练神经网络,从而产生新的健康和政策策略来对抗阿片类药物的流行。 科学和技术团队的重点是扩大能够利用 GPU 硬件解决问题的人员数量,培养当前和未来人工智能经济所需的训练有素且多样化的技术劳动力。 DeepGreen 是由来自物理、医学、生物、计算和农业科学的专家团队与经验丰富的信息技术专业人员团队合作设计的。 它将能够基于最新的 NVIDIA Tesla V100 架构进行超过 8 petaflops 的混合精度计算,并采用混合设计,允许跨异构计算节点传递高带宽消息。 其极端并行性将促进三个相互关联领域的研究:量子多体系统、分子模拟和建模以及深度学习、人工智能和进化算法。 DeepGreen 将打造变革性的研究渠道。它将能够研究生物系统中数千个量子纠缠原子和数百万个相互作用的成分,从而提供对结构功能机制的见解。 机器学习和深度神经网络将利用 DeepGreen 的张量核心来解决各种问题。这些问题包括:用于分子动力学模拟的粗粒度潜力的开发、机器人众包决策的实时动态处理、入侵性害虫的基因组测序以及医学成像中区分癌性肿瘤和良性结节的特征识别。 设计用于 DeepGreen 的软件将以开源形式向公众发布,其他科学家和研究人员可以立即使用和扩展它。该项目还将支持下一代数据科学家。专注于 GPU 计算和机器学习框架的培训研讨会、新的大学课程以及与现有的当地 NSF 资助的研究生培训计划的合作,将推动 DeepGreen 的广泛利用。该奖项反映了 NSF 的法定使命,并通过使用评估结果被认为值得支持。基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Balance of Solvent and Chain Interactions Determines the Local Stress State of Simulated Membranes
溶剂和链相互作用的平衡决定模拟膜的局部应力状态
  • DOI:
    10.1021/acs.jpcb.0c03937
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Winkeljohn, Conner M.;Himberg, Benjamin;Vanegas, Juan M.
  • 通讯作者:
    Vanegas, Juan M.
Membrane mediated mechanical stimuli produces distinct active-like states in the AT1 receptor
膜介导的机械刺激在 AT1 受体中产生独特的活性样状态
  • DOI:
    10.1038/s41467-023-40433-4
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Poudel, Bharat;Rajeshwar T, Rajitha;Vanegas, Juan M.
  • 通讯作者:
    Vanegas, Juan M.
Operationally accessible entanglement of one-dimensional spinless fermions
一维无旋费米子的可操作纠缠
  • DOI:
    10.1103/physreva.100.022324
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Barghathi, Hatem;Casiano;Del Maestro, Adrian
  • 通讯作者:
    Del Maestro, Adrian
Moments of the inverse participation ratio for the Laplacian on finite regular graphs
有限正则图上拉普拉斯算子的逆参与比矩
Tight hydrophobic core and flexible helices yield MscL with a high tension gating threshold and a membrane area mechanical strain buffer
紧密的疏水核心和灵活的螺旋产生具有高张力门控阈值和膜区域机械应变缓冲的 MscL
  • DOI:
    10.3389/fchem.2023.1159032
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sharma, Arjun;Anishkin, Andriy;Sukharev, Sergei;Vanegas, Juan M.
  • 通讯作者:
    Vanegas, Juan M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Delmaestro其他文献

Adrian Delmaestro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Delmaestro', 18)}}的其他基金

CAREER:Entanglement in strongly interacting quantum liquids and gases
职业:强相互作用的量子液体和气体中的纠缠
  • 批准号:
    2041995
  • 财政年份:
    2020
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics
合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台
  • 批准号:
    1808440
  • 财政年份:
    2018
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Continuing Grant
CAREER:Entanglement in strongly interacting quantum liquids and gases
职业:强相互作用的量子液体和气体中的纠缠
  • 批准号:
    1553991
  • 财政年份:
    2016
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Continuing Grant

相似国自然基金

高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
  • 批准号:
    82360382
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
  • 批准号:
    82373331
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Equipment: MRI: Track 1 Acquisition of a GPU-Accelerated Computing Cluster for Advanced Optimization and Design in Multidisciplinary Research and Education
设备:MRI:Track 1 获取 GPU 加速计算集群,用于多学科研究和教育中的高级优化和设计
  • 批准号:
    2320649
  • 财政年份:
    2023
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of NVIDIA DGX H100 GPU system for research and education at VCU
设备: MRI:轨道 1 采购 NVIDIA DGX H100 GPU 系统,用于 VCU 的研究和教育
  • 批准号:
    2316003
  • 财政年份:
    2023
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-accelerated cluster for research, training and outreach
MRI:获取 GPU 加速集群用于研究、培训和推广
  • 批准号:
    2215734
  • 财政年份:
    2022
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Standard Grant
Research Infrastructure: MRI: Acquisition of a GPU Cluster to Advance the Land Grant Mission at Washington State University Using AI-Driven Research
研究基础设施:MRI:收购 GPU 集群,利用人工智能驱动的研究推进华盛顿州立大学的土地授予任务
  • 批准号:
    2216108
  • 财政年份:
    2022
  • 资助金额:
    $ 89.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了