SCH: INT: Individualizing Care in Pregnancy and Childbirth through Digital Phenotyping
SCH:INT:通过数字表型分析实现妊娠和分娩的个性化护理
基本信息
- 批准号:1838901
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bringing together researchers and physicians from the Department of Women's Health, the Texas Advanced Computing Center, and the Institute for Computational Engineering & Sciences at The University of Texas at Austin, the goal of this project is to develop a digital phenotype of pregnancy to better understand factors influencing pregnancy outcomes. Women's health represents one of the most pressing health-policy issues impacting our nation. In no medical specialty are the deficiencies of medical evidence more pronounced than in women's health, especially in obstetrics. Over the course of the human life span, birth is one of the most dangerous health episodes for both mother and baby. Worldwide, between 2.6 and 4 million pregnancies result in stillbirth annually. Unlike other leading causes of mortality, birth-related deaths are largely preventable. Today, however, most adverse pregnancy outcomes are not predictable, and cannot be prevented. In this project, the research team will passively monitor a cohort of one thousand pregnant women from their first prenatal visit to six weeks post-partum. To accomplish this, participants will download the HealthyPregnancy smartphone app developed in this project to collect in situ social and behavioral data. The application passively captures participant's interactions with people and places via sensors and software throughout pregnancy. Analysis of this large collection of digital data, in combination with traditional medical monitoring data collected via participant's medical records will result in a digital phenotype of pregnancy. The digital phenotype allows for a more complete understanding of pregnancy at the macro scale and for more detailed understanding of outcomes as a continuum rather than isolated discrete events. It is widely understood that activity, social support, sleep, and cognitive function are important markers of health, particularly during pregnancy. Maternal obesity is associated with a number of complications in pregnancy including gestational diabetes, pre-eclampsia, macrosomia, caesarean delivery and stillbirth. Lack of social support and social interaction is also an important risk factor and has been shown to have adverse effects on pregnancy outcomes. Sleep disturbances are associated with poor health outcomes, particularly cardiovascular disease and inflammatory responses. Additionally, short sleep duration is associated with an increased incidence in diabetes and obesity and has been associated with an increase in mortality. Research suggests that women who experience pre-eclampsia more frequently report daily cognitive failures and increased emotional dysfunction years later. With the ubiquitous use of smartphones, it is now possible to collect lived experiences or data reflecting markers of pregnancy in the wild. Collecting accelerometer and GPS over time provide an indication of physical mobility and gross motor activity. Call and text message logs detail communication events and contribute to a view of social interaction and social contacts. Additionally, power state, screen time and touch events can be used to understand potential sleep disruption. Of greater significance is the analysis of this data in aggregate over the course of pregnancy. This longitudinal view and analysis of pregnancy in the wild using machine learning and mathematical models provides both an individual's digital phenotype of pregnancy and an aggregate digital phenotype of pregnancy. By gathering and analyzing these two products, they can be used to better understand outcomes and the continuum of events leading up to pregnancy outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将妇女健康系,德克萨斯州高级计算中心和德克萨斯大学奥斯汀分校计算工程与科学研究所的研究人员和医师汇集在一起,该项目的目标是开发一种数字化怀孕表型,以更好地了解影响怀孕的影响因素。妇女健康是影响我们国家的最紧迫的健康政策问题之一。在没有医学专业的情况下,医学证据的缺陷比妇女的健康更为明显,尤其是在妇产科中。在整个人类的生命过程中,出生是母亲和婴儿最危险的健康情节之一。在全球范围内,每年2.6至400万怀孕导致死产。与死亡的其他主要原因不同,与出生有关的死亡是可以预防的。然而,如今,大多数不良怀孕的结果是无法预测的,不能预防。在这个项目中,研究小组将被动监视一千名孕妇的同类,从首次访问产前访问到产后六周。为此,参与者将下载该项目中开发的HealthyPregnancy智能手机应用程序,以收集原位社交和行为数据。该应用被动地捕获参与者在整个怀孕期间通过传感器和软件与人和地方的互动。分析大量数字数据,结合通过参与者的医疗记录收集的传统医学监测数据,将导致怀孕的数字表型。数字表型可以在宏观量表上更加完整地了解怀孕,并更详细地理解结果是连续体而不是孤立的离散事件。众所周知,活动,社会支持,睡眠和认知功能是健康的重要标志,尤其是在怀孕期间。孕产妇肥胖与怀孕的许多并发症有关,包括妊娠糖尿病,前宾夕法尼亚,宏观疾病,剖腹产和死产。缺乏社会支持和社会互动也是一个重要的危险因素,已被证明对怀孕结果产生不利影响。睡眠障碍与健康状况不佳有关,尤其是心血管疾病和炎症反应。此外,短睡眠持续时间与糖尿病和肥胖症的发病率增加有关,并且与死亡率的增加有关。研究表明,经历预先启动前的女性更频繁地报告每天的认知失败并增加情绪功能障碍。随着智能手机无处不在的使用,现在可以收集反映野外怀孕标志的生活经验或数据。随着时间的流逝,收集加速度计和GPS提供了物理活动和总体运动活动的指示。呼叫和短信记录详细的通信事件,并有助于社交互动和社交联系。此外,功率状态,屏幕时间和触摸事件可用于了解潜在的睡眠中断。在怀孕过程中,对这些数据的分析具有更大的意义。使用机器学习和数学模型对野外怀孕的这种纵向观点和分析既提供了一个人的妊娠数字表型,又提供了妊娠的数字表型。通过收集和分析这两种产品,它们可以用来更好地理解结果和导致怀孕成果的事件的连续性。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的审查标准。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-World, Self-Hosted Kubernetes Experience
真实的、自托管的 Kubernetes 体验
- DOI:10.1145/3437359.3465603
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Packard, Michael;Stubbs, Joe;Drake, Justin;Garcia, Christian
- 通讯作者:Garcia, Christian
Evaluation of Clustering Techniques for GPS Phenotyping Using Mobile Sensor Data
- DOI:10.1145/3311790.3396665
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zachary S. Tschirhart;K. Schulz
- 通讯作者:Zachary S. Tschirhart;K. Schulz
Collecting and analyzing smartphone sensor data for health
收集和分析智能手机传感器数据以促进健康
- DOI:10.1145/3437359.3465599
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Drake, Justin;Schulz, Karl;Bukowski, Radek;Gaither, Kelly
- 通讯作者:Gaither, Kelly
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelly Gaither其他文献
ICASE/LaRC Symposium on Visualizing Time-Varying Data
ICASE/LaRC 时变数据可视化研讨会
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
D. Banks;T. Crockett;K. Stacy;bullet Hampton;Virginia K Stacy;N. Max;B. Becker;D. Banks;Mississippi;T. Crockett;Kathy Stacy;D. Banks;K. Stacy;Mary Adams;T. Crockett;Kwan;K. Severance;Lambertus Hesselink;R. Crawfis;Lawrence;Chuck Hansen;Duane Melson;L. Treinish;R. Haimes;Massachusetts;N. Max;Velvin Watson;Randy L. Ribler;Anup Mathur;Marc Abrams;Pak Chnng Wong;R. D. Bergeron;Will H Scullin;T. T. Kwan;Daniel A Reed;Eric J Davies;William B Cowan;B. Becket;Vineet Goel;Amar Mukherjee;R. Moorhead;Zhifan Zhu;Kelly Gaither;John Vanderzwagg;Tzi;William Mattson;Rick Angelini;Larry Matthias;Paula Detweiler;James Patten;G. Erlebacher;Richard J Schwartz;T. Crockett;William J Bent;R. Wilmoth;Bart A Singer;Patricia J. Crossno;M. Cheng;M. Livny;R. Ramakrishnan;Will Bene;Bart A Singer - 通讯作者:
Bart A Singer
Kelly Gaither的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelly Gaither', 18)}}的其他基金
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217227 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Cooperative Agreement
NSF INCLUDES DDLP: SPICE (Supporting Pacific Indigenous Computing Excellence) Data Science Program for Native Hawaiians and Pacific Islanders
NSF 包括 DDLP:针对夏威夷原住民和太平洋岛民的 SPICE(支持太平洋本土计算卓越)数据科学计划
- 批准号:
1744526 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Enabling Transformational Science and Engineering Through Integrated Collaborative Visualization and Data Analysis for the National User Community
通过集成协作可视化和数据分析为全国用户社区实现变革性科学与工程
- 批准号:
0906379 - 财政年份:2009
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SCoReViS: Scalable Collaborative and Remote Visualization Software
SCoReViS:可扩展的协作和远程可视化软件
- 批准号:
0751397 - 财政年份:2008
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
The Future of Data Analysis and Visualization as a Knowledge Discovery Tool in Science and Engineering
数据分析和可视化作为科学和工程知识发现工具的未来
- 批准号:
0751267 - 财政年份:2007
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
INT-ACT: Intangible Cultural Heritage, Bridging The Past, Present And Future
INT-ACT:非物质文化遗产,连接过去、现在和未来
- 批准号:
10102226 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
EU-Funded
SCH: INT: New Machine Learning Framework to Conduct Anesthesia Risk Stratification and Decision Support for Precision Health
SCH:INT:用于进行麻醉风险分层和精准健康决策支持的新机器学习框架
- 批准号:
2347604 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Intégration optimale des sources et gestion intelligente des charges dans le contexte communautaire des réseaux autonomes en région isolée
在隔离区域自治社区的背景下,实现资源和收费智能管理的优化集成
- 批准号:
RGPIN-2020-03951 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Intégration de l'hydrogène dans une chaîne de génération électrique à base d'énergies renouvelables
氢能与电力和可再生能源基础链的集成
- 批准号:
571176-2021 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Applied Research and Development Grants - Level 2