EAGER: Enabling Quantum Leap: Nanoengineering of Two-Dimensional and Twisted Ferromagnets Towards Room-Temperature Quantum Logic

EAGER:实现量子飞跃:二维和扭曲铁磁体纳米工程迈向室温量子逻辑

基本信息

  • 批准号:
    1838456
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical description: This EAGER project focuses on developing a new family of ultrathin, practically two dimensional magnetic materials using layer-on-layer stacking of atomically thin films of magnetic materials. Specifically, this work is focused on making nanoelectronic devices with ultrathin magnetic materials, where the active region is only a few atoms thick. The goal is to better understand the magnetic and electronic properties of these materials and devices. We develop experimental and theoretical tools to manipulate and model these magnetic materials, guided by a vision for these systems as platforms for efficient information storage and quantum information processing technologies. The research engages the participation of one graduate research student and one postdoctoral associate. The broader impacts of this project include activities to present cutting edge concepts in nanoscience to high school students through the Penn Experimental Research Physics Academy and Penn Summer Prep program, as well as to the general public through the annual Philadelphia Science Festival. Technical Description: This project focuses on the two-dimensional (2D) transition metal dichalcogenides vanadium disulfide and vanadium diselenide, shown to exhibit ferromagnetism with in-plane magnetic moments and Curie temperatures around room temperature, and are thus promising candidates for room-temperature quantum applications. Through theory, computation, and experiment, the research team is studying two main aspects of these materials: (a) their properties through the transition from 2D to 1D behavior in patterned structures, and (b) the emergent phenomena induced in rotationally misaligned multilayer stacks. The experimental component of the project combines growth by chemical vapor deposition, mechanical exfoliation and transfer, and electrical, optical, and magnetic measurements. In task (a) the project aims to develop controlled and scalable growth and fabrication techniques to create high-quality 2D materials and quasi-1D sculpted nanostructures with room temperature functionality in nanometer-scale architectures for spintronic and other device applications. Concurrently, the team aims to optimize structural properties such as atomic edge configuration, defect types and density, and relative lattice orientation to maximize performance. In task (b) the project seeks to discover and exploit the emergent quantum effects of rotational stacking of these materials and investigate the spin textures arising from the spatially modulated interlayer magnetic coupling. These spin textures may provide a rich variety of new physical effects and provide a platform for quantum information processing manipulatable by spin transfer torques. The broader impacts of this project include activities to present cutting edge concepts in nanoscience to high school students through the Penn Experimental Research Physics Academy and Penn Summer Prep program, and to the general public through the annual Philadelphia Science Festival.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:这个急切的项目着重于开发一个新的超薄家族,实际上是使用原子薄膜的磁性材料的层堆叠层的二维磁性材料。具体而言,这项工作的重点是用超薄磁性材料制造纳米电子设备,其中活性区域只有几个原子厚。目的是更好地了解这些材料和设备的磁性和电子特性。我们开发了实验和理论工具来操纵和建模这些磁性材料,以这些系统作为有效信息存储和量子信息处理技术的平台的指导。该研究参与了一名研究生研究生和一名博士后同事的参与。该项目的更广泛影响包括通过Penn实验研究物理学院和Penn Summer Prep计划向高中生展示纳米科学的尖端概念的活动,以及通过年度费城科学节向公众提供。技术描述:该项目的重点是二维(2D)过渡金属二甲化物二甲基二硫化物和二氧化基质化的二甲硅酸盐,并显示出具有平面磁矩和居里温度的铁磁性,因此在室温周围表现出库丽的温度,因此是室友量子量子应用的有希望的候选物。通过理论,计算和实验,研究团队正在研究这些材料的两个主要方面:(a)它们的特性通过在图案结构中从2D到1D行为的过渡,以及(b)在旋转错误的多层堆栈中引起的新兴现象。该项目的实验组成部分通过化学蒸气沉积,机械去角质和转移以及电气,光学和磁性测量结合了生长。在任务(a)中,该项目旨在开发受控且可扩展的生长和制造技术,以创建具有室温和其他设备应用的纳米尺度体系结构中的室温功能的高质量2D材料和准1D雕刻的纳米结构。同时,团队旨在优化结构性属性,例如原子边缘配置,缺陷类型和密度以及相对晶格方向,以最大程度地提高性能。在任务(b)中,该项目旨在发现和利用这些材料旋转堆叠的新兴量子效应,并研究由空间调制的层间层磁耦合产生的自旋纹理。这些旋转纹理可能会提供各种新的物理效果,并为通过自旋传输扭矩操纵的量子信息处理提供了一个平台。该项目的更广泛的影响包括通过Penn实验研究物理学院和Penn Summer Prep计划向高中生展示纳米科学的尖端概念的活动,并通过年度费城科学节向公众向公众提供。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识优点和广泛的criteria来评估的,并被认为是值得通过评估的支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controlled doping of graphene by impurity charge compensation via a polarized ferroelectric polymer
  • DOI:
    10.1063/5.0003099
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Kelotchi S. Figueroa;N. Pinto;Srinivas V. Mandyam;Meng-qiang Zhao;C. Wen;Paul Masih Das;Zhaoli Gao;M. Drndić;A. T. Charlie Johnson
  • 通讯作者:
    Kelotchi S. Figueroa;N. Pinto;Srinivas V. Mandyam;Meng-qiang Zhao;C. Wen;Paul Masih Das;Zhaoli Gao;M. Drndić;A. T. Charlie Johnson
Atomic-scale patterning in two-dimensional van der Waals superlattices
  • DOI:
    10.1088/1361-6528/ab596c
  • 发表时间:
    2020-03-06
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Das, Paul Masih;Thiruraman, Jothi Priyanka;Drndic, Marija
  • 通讯作者:
    Drndic, Marija
Large area few-layer TMD film growths and their applications
  • DOI:
    10.1088/2515-7639/ab82b3
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Mandyam, Srinivas V.;Kim, Hyong M.;Drndic, Marija
  • 通讯作者:
    Drndic, Marija
Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene
  • DOI:
    10.1038/s41467-019-14022-3
  • 发表时间:
    2020-01-28
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Gao, Zhaoli;Wang, Sheng;Johnson, A. T. Charlie
  • 通讯作者:
    Johnson, A. T. Charlie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marija Drndic其他文献

High-Bandwidth Solid-State Nanopore Sensors
  • DOI:
    10.1016/j.bpj.2011.11.2346
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Jacob Rosenstein;Meni Wanunu;Marija Drndic;Kenneth L. Shepard
  • 通讯作者:
    Kenneth L. Shepard
Ultrathin Nanopores for Nucleic Acid Analysis
  • DOI:
    10.1016/j.bpj.2009.12.3274
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Meni Wanunu;Marija Drndic
  • 通讯作者:
    Marija Drndic
Hochauflösende analysevorrichtungen und zugehörige verfahren
分析和分析
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marija Drndic;Meni Wanunu;Tali Dadosh
  • 通讯作者:
    Tali Dadosh

Marija Drndic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marija Drndic', 18)}}的其他基金

Wafer-Scale Manufacturing of Ultrathin Nanoporous Transition Metal Dichalcogenide Membranes Using Chemical Etching for Water Purification and Other Applications
使用化学蚀刻进行水净化和其他应用的超薄纳米多孔过渡金属二硫属化物膜的晶圆级制造
  • 批准号:
    2002477
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
In Situ TEM and Ex Situ Studies of Two-Dimensional Nanostructured Devices
二维纳米结构器件的原位 TEM 和异位研究
  • 批准号:
    1905045
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EFRI 2-DARE: Two-dimensional nanopores with electro-optical control for next generation biotechnological applications
EFRI 2-DARE:用于下一代生物技术应用的光电控制二维纳米孔
  • 批准号:
    1542707
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Controlled Assembly and Transport in Nanocrystal Structures
职业:纳米晶体结构中的受控组装和传输
  • 批准号:
    0449553
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NER: Microscopic Traps for Electrons in Vacuum
NER:真空中电子的微观陷阱
  • 批准号:
    0508346
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

EAGER: Quantum Manufacturing: Enabling Integrated Quantum Network Nodes
EAGER:量子制造:实现集成量子网络节点
  • 批准号:
    2240267
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Temperature dependence of optical nonlinearities of monolayer transition-metal dichalcogenides
EAGER:实现量子飞跃:单层过渡金属二硫属化物光学非线性的温度依赖性
  • 批准号:
    1838497
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Electrically tunable, long-distance coherent coupling between room temperature qubits mediated by magnons in low-dimensional magnets
EAGER:实现量子飞跃:由低维磁体中的磁振子介导的室温量子位之间的电可调、长距离相干耦合
  • 批准号:
    1838513
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Topological Nanoparticles as Potential Room-Temperature Qubits
EAGER:实现量子飞跃:拓扑纳米粒子作为潜在的室温量子位
  • 批准号:
    1838504
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
EAGER: Enabling Quantum Leap: Organic Magnonics for room temperature Quantum Logic
EAGER:实现量子飞跃:室温量子逻辑的有机磁振子学
  • 批准号:
    1836989
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了