I-Corps: Neuromorphic Target Tracking and Control for Insect-Scale Aerial Vehicles

I-Corps:昆虫级飞行器的神经形态目标跟踪和控制

基本信息

  • 批准号:
    1838470
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is to enable a broader range of end users to utilize the capabilities of autonomous robotics and to make advanced autonomous systems more broadly accessible and reliable. Robotics such as micro aerial vehicles (MAVs), self-driving cars, and other ground-based service robots are playing increasingly important roles in the lives of many industries as advances in autonomy enable them to be used safely and reliably in diverse situations. Accurately tracking targets and navigating while avoiding obstacles are important prerequisites to fully autonomous operation for robots. Neuromorphic cameras can more accurately detect motion than traditional cameras while consuming far less power. This project will explore the commercial applications of algorithms which interpret the data from neuromorphic cameras to enable autonomous systems to accurately track motion and navigate in unknown environments. By enabling more accurate sensing with reduced power consumption, these algorithms will increase the safety and reliability of autonomous systems. The proposed techniques will enable autonomous systems to react safely and robustly in real time to unexpected environmental changes without immediate operator intervention.This I-Corps project will explore the commercialization of neuromorphic sensing and control algorithms that enable accurate environmental sensing from moving robotic platforms. Autonomous navigation requires processing data from exteroceptive sensors for the purposes of obstacle avoidance and target tracking. These tasks must be accomplished in real time with minimal latency to maximize the capabilities and reliability of the autonomous robot. Neuromorphic cameras sense the environment with sub-millisecond latency and, unlike traditional cameras, provide information only about changes in the scene. The algorithms which will be explored by this project efficiently process the data from neuromorphic sensors to detect the presence of moving targets and stationary obstacles to enable efficient autonomous control for high-speed aerial and ground-based robots in uncertain and rapidly changing environments. These algorithms include neuromorphic control techniques which enable autonomous control in the presence of both environmental uncertainties such as disturbances and uncertain variations in the physical parameters of the robot. The proposed techniques have been validated in high-fidelity simulations using benchmark datasets and have been shown to be capable of rapid adaptation to unexpected changes while maintaining control of the autonomous system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是使更广泛的最终用户能够利用自主机器人的功能,并使先进的自主系统更广泛地访问和可靠。微型飞行器 (MAV)、自动驾驶汽车和其他地面服务机器人等机器人在许多行业的生活中发挥着越来越重要的作用,因为自主性的进步使它们能够在不同的情况下安全可靠地使用。准确跟踪目标、导航并避开障碍物是机器人实现完全自主操作的重要前提。神经形态相机可以比传统相机更准确地检测运动,同时消耗的电量要少得多。该项目将探索算法的商业应用,这些算法解释神经形态相机的数据,使自主系统能够在未知环境中准确跟踪运动和导航。通过在降低功耗的情况下实现更准确的传感,这些算法将提高自主系统的安全性和可靠性。所提出的技术将使自主系统能够对意外的环境变化做出安全、稳健的实时反应,而无需操作员立即干预。该 I-Corps 项目将探索神经形态传感和控制算法的商业化,以实现从移动机器人平台进行精确的环境传感。自主导航需要处理来自外感受传感器的数据,以实现避障和目标跟踪的目的。这些任务必须以最小的延迟实时完成,以最大限度地提高自主机器人的功能和可靠性。神经形态相机以亚毫秒延迟感知环境,与传统相机不同,它仅提供有关场景变化的信息。该项目将探索的算法可有效处理来自神经形态传感器的数据,以检测移动目标和静止障碍物的存在,从而在不确定和快速变化的环境中实现高速空中和地面机器人的高效自主控制。这些算法包括神经形态控制技术,可以在存在环境不确定性(例如机器人物理参数的干扰和不确定变化)的情况下实现自主控制。所提出的技术已在使用基准数据集的高保真模拟中得到验证,并被证明能够快速适应意外变化,同时保持对自主系统的控制。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silvia Ferrari其他文献

A particle-filter information potential method for tracking and monitoring maneuvering targets using a mobile sensor agent
使用移动传感器代理跟踪和监测机动​​目标的粒子滤波信息势方法
  • DOI:
    10.1177/1548512912445406
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjie Lu;G. Zhang;Silvia Ferrari;M. Anderson;Rafael Fierro
  • 通讯作者:
    Rafael Fierro
Molecular and Cellular Pathobiology NUP 98 Fusion Oncoproteins Promote Aneuploidy by Attenuating the Mitotic Spindle Checkpoint
分子和细胞病理学 NUP 98 融合癌蛋白通过减弱有丝分裂纺锤体检查点促进非整倍性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Salsi;Silvia Ferrari;P. Gorello;S. Fantini;Francesca Chiavolelli;C. Mecucci;V. Zappavigna
  • 通讯作者:
    V. Zappavigna
Satisficing in split-second decision making is characterized by strategic cue discounting.
满足瞬间决策的特点是战略线索折扣。
"Historia magistra vitae": How is the psychiatric rehabilitation technician trained in psychiatry's history?
《Historia Magistra vitae》:精神科康复技术人员是如何接受精神病学历史培训的?
  • DOI:
    10.3280/rsf2023-003004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giulia Ferrazzi;S. Catellani;Silvia Ferrari;M. Marchi;L. Pingani
  • 通讯作者:
    L. Pingani
Experiences, opinions and current policies on users’ choice and change of the allocated primary mental health professional: a survey among directors of community mental health centers in the Emilia-Romagna region, Italy
用户选择和更换初级心理卫生专业人员的经验、意见和现行政策:意大利艾米利亚-罗马涅地区社区心理卫生中心主任的调查

Silvia Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silvia Ferrari', 18)}}的其他基金

I-Corps: Flow-aided aerial vehicle navigation and control
I-Corps:流动辅助飞行器导航和控制
  • 批准号:
    2132243
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Real-time intelligent sensor path planning based on information value estimation
I-Corps:基于信息价值估计的实时智能传感器路径规划
  • 批准号:
    2038358
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Control for Visual Scene Perception
I-Corps:视觉场景感知控制
  • 批准号:
    1934303
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1556900
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1545574
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1408022
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1227877
  • 财政年份:
    2012
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Adaptive Dynamic Programming Approach to the Coordination of Heterogeneous Robotic Sensors Networks
协作研究:协调异构机器人传感器网络的自适应动态规划方法
  • 批准号:
    1028506
  • 财政年份:
    2010
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Analysis and Design of Cultured Neuronal Networks for Adaptive and Reconfigurable Control
用于自适应和可重构控制的培养神经元网络的分析和设计
  • 批准号:
    0925407
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical Systems
在神经网络建模和动力系统控制中保留先验知识的约束优化方法
  • 批准号:
    0823945
  • 财政年份:
    2008
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向神经形态视觉的时空特征学习及目标追踪算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
面向神经形态视觉的目标跟踪关键技术研究
  • 批准号:
    62102205
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于MOEA和ANN的严寒地区办公建筑形态节能设计决策支持模型研究
  • 批准号:
    51708149
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
激光雷达图像目标自动识别算法研究
  • 批准号:
    60372034
  • 批准年份:
    2003
  • 资助金额:
    7.0 万元
  • 项目类别:
    面上项目

相似海外基金

Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
  • 批准号:
    ST/Y50998X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Enabling novel photonic neuromorphic devices through bridging DNA-programmable assembly and nanofabrication
NSF 融合加速器轨道 M:通过桥接 DNA 可编程组装和纳米制造实现新型光子神经形态设备
  • 批准号:
    2344415
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
  • 批准号:
    2340249
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Solution-based Transition Metal Dichalcogenides for Flexible Neuromorphic Electronics
用于柔性神经形态电子器件的基于溶液的过渡金属二硫属化物
  • 批准号:
    EP/Y001567/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了