A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical Systems

在神经网络建模和动力系统控制中保留先验知识的约束优化方法

基本信息

  • 批准号:
    0823945
  • 负责人:
  • 金额:
    $ 32.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

Proposal Number: ECCS-0823945Proposal Title: A Constrained Optimization Approach to Preserving Prior Knowledge in Neural-Network Modeling and Control of Dynamical SystemsPI Name: Ferrari, SilviaPI Institution: Duke UniversityThe objective of this research is to develop and implement a unified theory for memory and forgetting in artificial neural networks. The novel learning algorithms developed through this research will eliminate interference and catastrophic interference in nonlinear and fully-connected neural networks, thereby enhancing their applicability in a number of engineering applications. The approach is to formulate learning through a constrained backpropagation approach that optimizes the neural network performance subject to long-term memory constraints, which may be deteriorated over time via a penalty function or Lagrange multipliers.Intellectual MeritThe intellectual merit of the proposed research is the development of a novel constrained backpropagation approach that combines constrained optimization theory and classical backpropagation. The newly developed adjoined error gradient and algebraic training formalisms together allow to formulate constrained backpropagation efficiently and effectively, while also exploiting existing artificial neural networks algorithms, such as Levenberg-Marquardt and resilient backpropagation.Broader ImpactThe proposed activity will enhance the applicability and effectiveness of on-line adaptive neural networks in a broad spectrum of complex science and engineering problems, namely, function approximation, solution of differential equations, system identification, and control. The constrained-backpropagation theory and algorithms will be implemented on data-assimilation problems, which will benefit society by producing timely predictions about environmental change and dispersion of urban pollutants, and on adaptive dual control, which will produce flight control systems that are fault and damage-tolerant, and make piloted airplanes safer and easier to fly. Also, they will be demonstrated through benchmark problems in robotics and mine hunting using Graphical User Interfaces, for educational and dissemination purposes. This approach has already been proven successful at creating positive synergies and collaborations between Duke University and K-12 students from the Chapel Hill (NC) public schools, as well as small local industries.
提案编号:ECCS-0823945 提案标题:在神经网络建模和动态系统控制中保留先验知识的约束优化方法 PI 名称:Ferrari, Silvia PI 机构:杜克大学 这项研究的目标是开发和实现记忆和控制的统一理论。人工神经网络中的遗忘。 通过这项研究开发的新型学习算法将消除非线性和全连接神经网络中的干扰和灾难性干扰,从而增强其在许多工程应用中的适用性。 该方法是通过约束反向传播方法来制定学习,该方法优化受长期记忆约束的神经网络性能,长期记忆约束可能会随着时间的推移通过惩罚函数或拉格朗日乘数而恶化。 智力优点所提议的研究的智力优点是开发一种新颖的约束反向传播方法,结合了约束优化理论和经典反向传播。 新开发的邻接误差梯度和代数训练形式一起允许高效且有效地制定约束反向传播,同时还利用现有的人工神经网络算法,例如Levenberg-Marquardt和弹性反向传播。更广泛的影响所提出的活动将增强其适用性和有效性线自适应神经网络在广泛的复杂科学和工程问题中的应用,即函数逼近、微分方程的求解、系统识别和控制。 约束反向传播理论和算法将应用于数据同化问题,通过对环境变化和城市污染物扩散的及时预测来造福社会,以及自适应双控制,这将产生故障和损坏的飞行控制系统- 宽容,使有人驾驶的飞机更安全、更容易飞行。 此外,它们还将通过使用图形用户界面的机器人和探雷中的基准问题进行演示,以用于教育和传播目的。 事实证明,这种方法在杜克大学和来自教堂山 (NC) 公立学校的 K-12 学生以及当地小型企业之间建立积极的协同效应和合作方面已经取得了成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Silvia Ferrari其他文献

A particle-filter information potential method for tracking and monitoring maneuvering targets using a mobile sensor agent
使用移动传感器代理跟踪和监测机动​​目标的粒子滤波信息势方法
  • DOI:
    10.1177/1548512912445406
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenjie Lu;G. Zhang;Silvia Ferrari;M. Anderson;Rafael Fierro
  • 通讯作者:
    Rafael Fierro
Molecular and Cellular Pathobiology NUP 98 Fusion Oncoproteins Promote Aneuploidy by Attenuating the Mitotic Spindle Checkpoint
分子和细胞病理学 NUP 98 融合癌蛋白通过减弱有丝分裂纺锤体检查点促进非整倍性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Salsi;Silvia Ferrari;P. Gorello;S. Fantini;Francesca Chiavolelli;C. Mecucci;V. Zappavigna
  • 通讯作者:
    V. Zappavigna
Satisficing in split-second decision making is characterized by strategic cue discounting.
满足瞬间决策的特点是战略线索折扣。
"Historia magistra vitae": How is the psychiatric rehabilitation technician trained in psychiatry's history?
《Historia Magistra vitae》:精神科康复技术人员是如何接受精神病学历史培训的?
  • DOI:
    10.3280/rsf2023-003004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giulia Ferrazzi;S. Catellani;Silvia Ferrari;M. Marchi;L. Pingani
  • 通讯作者:
    L. Pingani
Experiences, opinions and current policies on users’ choice and change of the allocated primary mental health professional: a survey among directors of community mental health centers in the Emilia-Romagna region, Italy
用户选择和更换初级心理卫生专业人员的经验、意见和现行政策:意大利艾米利亚-罗马涅地区社区心理卫生中心主任的调查

Silvia Ferrari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Silvia Ferrari', 18)}}的其他基金

I-Corps: Flow-aided aerial vehicle navigation and control
I-Corps:流动辅助飞行器导航和控制
  • 批准号:
    2132243
  • 财政年份:
    2021
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
I-Corps: Real-time intelligent sensor path planning based on information value estimation
I-Corps:基于信息价值估计的实时智能传感器路径规划
  • 批准号:
    2038358
  • 财政年份:
    2020
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
I-Corps: Control for Visual Scene Perception
I-Corps:视觉场景感知控制
  • 批准号:
    1934303
  • 财政年份:
    2019
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
I-Corps: Neuromorphic Target Tracking and Control for Insect-Scale Aerial Vehicles
I-Corps:昆虫级飞行器的神经形态目标跟踪和控制
  • 批准号:
    1838470
  • 财政年份:
    2018
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1556900
  • 财政年份:
    2015
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1545574
  • 财政年份:
    2015
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Distributed Approximate Dynamic Programming Approach for Robust Adaptive Control of Multiscale Dynamical Systems
协作研究:多尺度动力系统鲁棒自适应控制的分布式近似动态规划方法
  • 批准号:
    1408022
  • 财政年份:
    2014
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant
Collaborative Research: A Neurodynamic Programming Approach for the Modeling, Analysis, and Control of Nanoscale Neuromorphic Systems
协作研究:用于纳米级神经形态系统建模、分析和控制的神经动力学编程方法
  • 批准号:
    1227877
  • 财政年份:
    2012
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Adaptive Dynamic Programming Approach to the Coordination of Heterogeneous Robotic Sensors Networks
协作研究:协调异构机器人传感器网络的自适应动态规划方法
  • 批准号:
    1028506
  • 财政年份:
    2010
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Continuing Grant
Analysis and Design of Cultured Neuronal Networks for Adaptive and Reconfigurable Control
用于自适应和可重构控制的培养神经元网络的分析和设计
  • 批准号:
    0925407
  • 财政年份:
    2009
  • 资助金额:
    $ 32.21万
  • 项目类别:
    Standard Grant

相似国自然基金

激励分布式资源支撑灵活性与弹性提升的配网零售侧电价优化定价方法
  • 批准号:
    52307136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于凸优化的相控阵-天线罩系统一体化方向图高效综合方法研究
  • 批准号:
    62301379
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同极化信息的时序InSAR地质灾害监测优化方法研究
  • 批准号:
    42307255
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于Cramér-Rao下限最优准则的DSInSAR参数优化选取与形变估计方法研究
  • 批准号:
    42304041
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
考虑碳排影响的全流程碳足迹表征与资源配置优化方法研究
  • 批准号:
    62303186
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel approach to identify RNA-bound small molecules in vivo
体内鉴定 RNA 结合小分子的新方法
  • 批准号:
    10646626
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
Enhancing HIV prevention and reducing alcohol use among people receiving STI care in Malawi: An HIV status neutral approach
在马拉维接受性传播感染护理的人群中加强艾滋病毒预防并减少饮酒:艾滋病毒状况中立的方法
  • 批准号:
    10696585
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
Examining the mechanisms and optimization of malaria chemoprevention strategies to improve birth outcomes in Africa
检查疟疾化学预防策略的机制和优化,以改善非洲的出生结果
  • 批准号:
    10642646
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
  • 批准号:
    10839117
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
Metabolic flux analysis and PDX models to understand therapeutic vulnerabilities following inhibition of Ref-1 redox signaling in pancreatic cancer
代谢通量分析和 PDX 模型可了解胰腺癌中 Ref-1 氧化还原信号传导抑制后的治疗脆弱性
  • 批准号:
    10717281
  • 财政年份:
    2023
  • 资助金额:
    $ 32.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了