EAGER: Understanding Molecular Control and Phase Behavior of Random Heteropolymer Materials for Selective Transport
EAGER:了解用于选择性传输的随机杂聚物材料的分子控制和相行为
基本信息
- 批准号:1836961
- 负责人:
- 金额:$ 29.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY:In nature, membrane proteins are the gatekeepers that mediate molecular transport to maintain cellular processes. If polymers can be generated with separation performance similar to that of membrane proteins, they could offer very significant impacts on the environment, energy, separation technologies, and life sciences. For example, membranes are in high use for water purification and desalination, carbon dioxide capture and separation, chemical purification, and lithium battery applications. Over decades there have been significant efforts in improving polymer chemistry and self-assembly to better mimic the known structures of membrane proteins, which have led to limited advances in membrane performance. The bottleneck is to identify critical design parameters in these highly complex and diverse biological systems. By fundamentally understanding the spatial arrangement of a polymer chain inserted in a cellular lipid analogue and correlating it with molecular transport, this project aims to provide insights to the long-standing question: "what level of molecular control over polymeric materials is needed to replicate protein transport properties?" If successful, the project may result in new design rules for bio-inspired polymers, change the pathways for membrane development, and lead to technologically relevant membranes. The proposed studies are highly interdisciplinary and afford an excellent platform for training students at all levels. They will also provide software tools for polymer analysis as well as multiple outreach opportunities.TECHNICAL SUMMARY:For membrane proteins the common belief is that well-defined protein structure is requisite to simultaneously achieving high flux and selectivity. For decades, various porous materials have been designed following this rule and explored for selective transport with limited success. Based on preliminary results using random heteropolymers, the central hypothesis for the proposed study is that once the heteropolymer composition is fixed, the statistical monomer distribution, rather than the atomically precise polymer structure, is the key parameter governing the resulting transport properties. This project aims to test this hypothesis by: (1) developing software tools to perform in-depth analysis of random heteropolymer sequence; (2) characterizing heteropolymer chain conformation upon lipid insertion to correlate the heteropolymer phase behavior with rapid, selective proton transport; (3) exploring heteropolymer-based block copolymers for analysis of heteropolymer chain conformation and transport properties for future membrane design. Preliminary results point to the potential that unstructured polymer chains can perform at similar level as well-folded proteins for proton transport. The planned exploratory studies will identify the critical design parameters behind such behavior, which may impact the current approach to designing membranes. The results may also change the traditional view on structure-function relationships in naturally occurring biopolymers and affect future development of bio-inspired polymers. Based on recent advances in living polymerization, the results would be well posed to generate technologically important membranes. Furthermore, the planned studies will: (1) provide graduate and undergraduate research opportunities, as well as outreach opportunities through a joint effort with the California Academy for educating the public and middle school students on polymers; (2) develop new software tools for heteropolymer analysis and make them publicly available; and (3) provide the materials communities with a mechanism to overcome a barrier in starting heteropolymer-related projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:在自然界中,膜蛋白是介导分子转运以维持细胞过程的看门人。如果可以使用类似于膜蛋白的分离性能产生聚合物,则它们可能会对环境,能量,分离技术和生命科学产生非常重大的影响。例如,膜高用于水纯化和淡化,二氧化碳捕获和分离,化学纯化和锂电池的应用。几十年来,在改善聚合物化学和自组装方面已经做出了重大努力,以更好地模仿膜蛋白的已知结构,这导致膜性能的进展有限。瓶颈是在这些高度复杂和多样化的生物系统中识别关键设计参数。通过从根本上了解插入细胞脂质类似物并将其与分子转运相关的聚合物链的空间排列,该项目旨在为长期存在的问题提供见解:“需要哪些分子控制聚合物材料来复制蛋白质运输特性?” 如果成功,该项目可能会为生物启发的聚合物提供新的设计规则,改变膜开发的途径,并导致技术相关的膜。拟议的研究是高度跨学科的,为各级培训学生提供了一个绝佳的平台。 他们还将提供用于聚合物分析的软件工具以及多个外展机会。技术摘要:对于膜蛋白,普遍的信念是,定义明确的蛋白质结构是同时实现高通量和选择性的必要条件。几十年来,已经根据此规则设计了各种多孔材料,并探索了成功运输,成功运输有限。基于使用随机杂聚合物的初步结果,提出的研究的中心假设是,一旦杂聚合物组成是固定的,统计单体分布,而不是原子上精确的聚合物结构,是控制所得运输特性的关键参数。该项目旨在通过以下方式检验此假设:(1)开发软件工具以对随机杂物序列进行深入分析; (2)在脂质插入时表征杂聚物链构象,以将杂聚合物相的行为与快速,选择性质子转运相关联; (3)探索基于杂聚物的块共聚物,以分析杂聚合物链构象和未来膜设计的传输特性。 初步结果表明,非结构化聚合物链可以在相似的水平和折叠蛋白中进行质子转运的潜力。 计划的探索性研究将确定这种行为背后的关键设计参数,这可能会影响当前设计膜的方法。结果还可能改变自然发生的生物聚合物中结构功能关系的传统观点,并影响生物启发的聚合物的未来发展。根据生活聚合的最新进展,将为生成技术重要的膜的结果很好地摆姿势。 此外,计划的研究将:(1)通过与加利福尼亚学院的共同努力提供研究生和本科研究机会,并提供宣传机会,以教育公众和中学生对聚合物的教育; (2)开发新的软件工具用于杂物分析并使它们公开可用; (3)为材料社区提供了一种克服与杂物相关项目的障碍的机制。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-chain heteropolymers transport protons selectively and rapidly
- DOI:10.1038/s41586-019-1881-0
- 发表时间:2020-01-09
- 期刊:
- 影响因子:64.8
- 作者:Jiang, Tao;Hall, Aaron;Xu, Ting
- 通讯作者:Xu, Ting
Practical Prediction of Heteropolymer Composition and Drift
杂聚物组成和漂移的实际预测
- DOI:10.1021/acsmacrolett.8b00813
- 发表时间:2018
- 期刊:
- 影响因子:7.015
- 作者:Smith, Anton A.;Hall, Aaron;Wu, Vincent;Xu, Ting
- 通讯作者:Xu, Ting
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ting Xu其他文献
Diluted Ionic Liquid Electrolyte-Assisted Stable Cycling of Small Molecular Organics
稀离子液体电解质辅助小分子有机物的稳定循环
- DOI:
10.1002/celc.202101156 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ting Xu;Jian Qin;Yutao Liu;Qing Lan;Yali Zhao;Zhiping Song;Hui Zhan - 通讯作者:
Hui Zhan
Enhanced N2O emission rate in field soil undergoing conventional intensive fertilization is attributed to the shifts of denitrifying guilds
常规强化施肥田间土壤 N2O 排放率增加归因于反硝化基团的变化
- DOI:
10.1016/s1002-0160(20)60050-9 - 发表时间:
2021-02 - 期刊:
- 影响因子:5.7
- 作者:
Mengmeng Ji;Hao Tian;Xiaogang Wu;Ying Zhu;Guojun Wu;Ting Xu;Jingguo Wang;Xiaojun Zhang - 通讯作者:
Xiaojun Zhang
Mediating Role of Knowledge Hiding Behaviors Between Cronyism and Job Performance: An Evidence from Public Sector Universities
知识隐藏行为在任人唯亲和工作绩效之间的中介作用:来自公立大学的证据
- DOI:
10.1007/s13132-024-01834-y - 发表时间:
2024 - 期刊:
- 影响因子:3.3
- 作者:
Ting Xu;Bashir Ahmed;Muhammad Waseem Bari;Muhammad Akmal - 通讯作者:
Muhammad Akmal
Achieving manufacturing supply chain resilience: the role of paradoxical leadership and big data analytics capability
实现制造供应链弹性:矛盾领导力和大数据分析能力的作用
- DOI:
10.1108/jmtm-05-2023-0206 - 发表时间:
2023 - 期刊:
- 影响因子:7.6
- 作者:
Ting Xu;Xinyu Liu - 通讯作者:
Xinyu Liu
Electric Field Alignment of Diblock Copolymer Thin Films
二嵌段共聚物薄膜的电场排列
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Ting Xu;Jiayu Wang;Thomas P. Russel - 通讯作者:
Thomas P. Russel
Ting Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ting Xu', 18)}}的其他基金
I-Corps: Biodegradable plastics that incorporate plastic degrading enzymes
I-Corps:含有塑料降解酶的可生物降解塑料
- 批准号:
2043075 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Phase Behavior of Random Heteropolymers In Solution
无规杂聚物在溶液中的相行为
- 批准号:
2104443 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
EFRI E3P: Program plastic lifecycle by rationally design enzyme-containing plastics
EFRI E3P:通过合理设计含酶塑料来规划塑料生命周期
- 批准号:
2132025 - 财政年份:2021
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: Simulation-Based Design of Functional Sub-nanometer Porous Membranes
DMREF:协作研究:基于仿真的功能性亚纳米多孔膜设计
- 批准号:
1235439 - 财政年份:2012
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Directed Nanoparticle Assemblies in Thin Films
薄膜中的定向纳米颗粒组件
- 批准号:
1007002 - 财政年份:2010
- 资助金额:
$ 29.81万 - 项目类别:
Continuing Grant
Washington ACS Meeting: Washington, DC; August 16-19, 2009
华盛顿 ACS 会议:华盛顿特区;
- 批准号:
0938713 - 财政年份:2009
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
Self-Assembly of Diblock Copolymer-Based Supramolecule Thin Films at Two Length Scales
基于二嵌段共聚物的超分子薄膜在两种长度尺度上的自组装
- 批准号:
0805301 - 财政年份:2008
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
相似国自然基金
OsZRF1/2调控水稻锌吸收的分子机理解析
- 批准号:32300227
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轮纹病菌诱导苹果MdMAPK6-T236位点磷酸化的抗病分子机理解析
- 批准号:32372649
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高温通过TaHY5L调控TaPHS-3D影响小麦穗发芽抗性的分子机理解析
- 批准号:32301810
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山葡萄VaZFHD4-VaNAC26模块调控茉莉酸合成应答干旱胁迫的分子机理解析
- 批准号:32302517
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
油菜雄性不育恢复基因BnaMs3抑制不育基因Bnams4b毒害的分子机理解析
- 批准号:32372178
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
- 批准号:
2338209 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Standard Grant
分子動力学計算と連続体計算の協働で紐解く界面活性剤添加による乱流抑制の物理機構
通过分子动力学和连续介质计算的协作揭示添加表面活性剂抑制湍流的物理机制
- 批准号:
24KJ0109 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Grant-in-Aid for JSPS Fellows
発光開殻分子集合体によるスピンフォトニクス機能の創出と理解
使用发光开壳分子组装体创建和理解自旋光子学功能
- 批准号:
23K26673 - 财政年份:2024
- 资助金额:
$ 29.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)