QLC: EAGER: Control of Quantum Dynamics and Catalysis Using Molecular Polaritonics

QLC:EAGER:利用分子极化学控制量子动力学和催化

基本信息

项目摘要

Chemists routinely study how light interacts with molecules. Optical spectroscopy is an important tool in the characterization of molecular structure and chemical reactions. In recent years there has been a growing interest in an unusual twist of optical spectroscopy: if the container holding the molecules is modified to include two parallel mirrors, light that enters the container will interact with the sample molecules, and also reflect back and forth between the mirrors. If the dimensions of the container just right (a few microns, where a micron is one millionth of a meter), the mixing of light and molecules creates a new kind of particle. These new light-matter hybrids are called "polaritons," and their behavior can be manipulated by changing the dimensions of the cavity or the wavelength of light. In this project funded by the Chemical Structure Dynamics and Mechanism (CSDM-A) program of the Chemistry Division, Professor Kevin Kubarych of the University of Michigan and his students are combining microcavities and advanced laser-based optical spectroscopy to study the behavior of polaritons. They are interested in how polaritons respond to changes in light exposure, and whether the actual chemical reactivity of the molecular parts of the polaritons is different from normal molecules, and whether their reactivity can be controlled simply by changing the dimensions of the container. A potential outcome of this research is the improved efficiency and economy of chemical reactions, perhaps including industrial catalytic processes and those relevant to solar energy conversion.Vibrational strong coupling between molecular vibrational states and cavity modes leads to energy shifted states that have hybrid molecular and optical character. Mode-selective coupling offers the promise to externally modulate chemical structure and energetics, which can be used to manipulate relaxation dynamics, such as excited state charge transfer and ground electronic state electrocatalysis. This proposal aims to (1) greatly expand the scope of coordination complexes coupled to microcavities to develop fundamental understanding of polaritons and their relaxation (vibrational energy relaxation and redistribution, as well as spectral diffusion and coherence transfer); (2) employ polariton-modulated excited state charge transfer in molecular ?forks? to control the movement of electronic wavepackets with polaritonic bridging vibrations; (3) combine microcavities with electrochemistry using thin gold layers as both cavity mirrors and electrodes for electrochemistry and electrocatalysis. The students involved in this project are gaining invaluable experience in ultrafast spectroscopy, quantum dynamics, chemical reaction dynamics and electrocatalysis. Improvements in practical electrocatalysis stand to dramatically enhance our ability to reduce CO2 while generating useful fuels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学家通常研究光如何与分子相互作用。 光谱法是表征分子结构和化学反应的重要工具。 近年来,对光谱的异常扭曲的兴趣越来越大:如果对持有分子的容器进行了修改,以包括两个平行的镜子,那么进入容器的光将与样品分子相互作用,并且也会在镜子之间来回反射。如果容器的尺寸恰到好处(几微米,其中微米为一百万米),则光和分子的混合会产生一种新的粒子。 这些新的轻型杂种称为“ polaritons”,可以通过更改光腔或光波长的尺寸来操纵它们的行为。在化学部的化学结构动力学和机制(CSDM-A)计划资助的该项目中,密歇根大学的凯文·库巴里奇教授及其学生正在结合微腔和基于激光的高级光谱,以研究极化子的行为。 他们对极化子对光暴露的变化的反应以及极化子分子部分的实际化学反应性是否与正常分子不同,以及是否可以通过更改容器的尺寸来控制其反应性。这项研究的潜在结果是化学反应的效率和经济性的提高,可能包括工业催化过程以及与太阳能转化相关的过程。分子振动状态和空腔模式之间的振动强耦合会导致具有混合分子和光学特征的能量转移状态。模式选择性耦合为外部调节化学结构和能量学提供了承诺,可用于操纵松弛动力学,例如激发态电荷转移和地面电子状态电催化。该建议旨在(1)大大扩大与微腔的配位络合物的范围,以发展对极性子及其放松的基本理解(振动能量放松和重新分布,以及光谱扩散和连贯的传递); (2)在分子?叉中使用极地调节的激发状态电荷转移?控制具有极化桥接振动的电子波袋的运动; (3)将微腔与电化学相结合,使用薄金层作为腔体镜子和电极,用于电化学和电催化。参与该项目的学生在超快光谱,量子动力学,化学反应动力学和电催化方面获得了宝贵的经验。实际电催化的改善,可以极大地增强我们减少二氧化碳的能力,同时产生有用的燃料。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准来评估值得支持的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrafast vibrational dynamics of a solute correlates with dynamics of the solvent
  • DOI:
    10.1063/5.0061770
  • 发表时间:
    2021-10-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Crum, Vivian F.;Kiefer, Laura M.;Kubarych, Kevin J.
  • 通讯作者:
    Kubarych, Kevin J.
Direct comparison of amplitude and geometric measures of spectral inhomogeneity using phase-cycled 2D-IR spectroscopy
  • DOI:
    10.1063/5.0043961
  • 发表时间:
    2021-05-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Duan, Rong;Mastron, Joseph N.;Kubarych, Kevin J.
  • 通讯作者:
    Kubarych, Kevin J.
Isolating Polaritonic 2D-IR Transmission Spectra
  • DOI:
    10.1021/acs.jpclett.1c03198
  • 发表时间:
    2021-11-25
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Duan, Rong;Mastron, Joseph N.;Kubarych, Kevin J.
  • 通讯作者:
    Kubarych, Kevin J.
Transmission Mode 2D-IR Spectroelectrochemistry of In Situ Electrocatalytic Intermediates
  • DOI:
    10.1021/acs.jpclett.1c00504
  • 发表时间:
    2021-04-09
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Kiefer, Laura M.;Michocki, Lindsay B.;Kubarych, Kevin J.
  • 通讯作者:
    Kubarych, Kevin J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Kubarych其他文献

An alcove at the acetyl-CoA synthase nickel active site is required for productive substrate CO binding and anaerobic carbon fixation.
乙酰辅酶A合酶镍活性位点处的凹室是生产性底物CO结合和厌氧碳固定所必需的。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Seth Wiley;Claire Griffith;Peter Eckert;A. P. Mueller;Robert Nogle;S. Simpson;Michael Köpke;Mehmet Can;R. Sarangi;Kevin Kubarych;S. Ragsdale
  • 通讯作者:
    S. Ragsdale

Kevin Kubarych的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Kubarych', 18)}}的其他基金

Cavity-Controlled Vibrational Dynamics and Chemical Reactivity with Quantum Strong Coupling
具有量子强耦合的腔控制振动动力学和化学反应性
  • 批准号:
    1955026
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Site-Specific Time-Resolved Multidimensional Spectroscopy of Electron Transfer Dynamics
电子转移动力学的特定位点时间分辨多维光谱
  • 批准号:
    1565795
  • 财政年份:
    2016
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Ultrafast Dynamics of Electronic Excited States: Photocatalysis and Photomagnetism
电子激发态的超快动力学:光催化和光磁性
  • 批准号:
    1300239
  • 财政年份:
    2013
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: Time-Resolved Condensed Phase Reaction Dynamics Investigated by Multidimensional Infrared Spectroscopy
职业:通过多维红外光谱研究时间分辨凝聚相反应动力学
  • 批准号:
    0748501
  • 财政年份:
    2008
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似国自然基金

渴望及其对农村居民收入差距的影响研究
  • 批准号:
    71903117
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
威胁应对视角下的消费者触摸渴望及其补偿机制研究
  • 批准号:
    71502075
  • 批准年份:
    2015
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Advancing Adaptive Vibrational Control
EAGER:推进自适应振动控制
  • 批准号:
    2310300
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: Enhancement of Ammonia combustion by spatiotemporal control of plasma kinetics
EAGER:通过等离子体动力学的时空控制增强氨燃烧
  • 批准号:
    2337461
  • 财政年份:
    2024
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: Robust Data-Driven Robotic Manipulation via Bayesian Inference and Passivity-Based Control
EAGER:通过贝叶斯推理和基于被动的控制进行稳健的数据驱动机器人操作
  • 批准号:
    2330794
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: Toward a Network-Based Framework for Analysis and Control of Inverter-Dominated Power Grids
EAGER:建立基于网络的逆变器主导电网分析和控制框架
  • 批准号:
    2333563
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
  • 批准号:
    2232307
  • 财政年份:
    2022
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了