Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
基本信息
- 批准号:1835769
- 负责人:
- 金额:$ 30.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project targets a difficult problem in weather and climate prediction -- the representation of convection. Accurate representation of convection is important, since a majority of current model predictions depend on it. Unraveling the physics involved in convective conditions, clouds and aerosols may take years of modeling to fully understand; however, a set of machine learning techniques, known as "neural net techniques", may provide enhanced predictability in the interim, and this project explores their potential.The project develops a Python library enabling the use of machine learning (artificial neural networks) in a broad range of science domains. The focus is on integration of convection and cloud formation within larger-scale climate models, with the Community Earth System Model (CESM) as an initial target. The project develops a new set of machine learning climate model parameterizations to reduce uncertainty in weather and climate predictions. The neural networks will be trained on high-fidelity simulations that explicitly resolve convection. Two types of high-resolution simulations will be used for training the neural networks: 1) an augmented super-parameterized simulation, and 2) a full Global Cloud Resolving Model (GCRM) simulation based on the ICOsahedral Non-hydrostatic (ICON) modelling frameworks provided by the Max Planck Institute, using initial 5km horizontal resolution. The effort has the potential to increase understanding of convection dynamics and processes across scales, and could potentially be implemented to address other scale problems as well, where it is too computationally costly or impractical to represent processes occurring at much finer scales than the main grid resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目针对天气和气候预测中的一个困难问题 - 对流的代表。 对流的准确表示非常重要,因为大多数当前模型预测都取决于它。 揭开对流条件,云和气溶胶所涉及的物理学可能需要多年的建模才能充分理解;但是,一组被称为“神经网络技术”的机器学习技术可能会在此期间提供增强的可预测性,并且该项目探索了它们的潜力。该项目开发了一个python库,从而可以在广泛的科学领域中使用机器学习(人工神经网络)。重点是将对流和云形成的整合在大规模的气候模型中,将社区地球系统模型(CESM)作为初始目标。 该项目开发了一组新的机器学习气候模型参数化,以减少天气和气候预测的不确定性。 神经网络将接受明确解决对流的高保真模拟培训。 将使用两种类型的高分辨率模拟来训练神经网络:1)增强的超级参数化模拟,以及2)使用最初的5km planck Institute提供的基于IcosaheDral非静态(ICON)建模框架的完整全球云解析模型(GCRM)仿真(GCRM)模拟。 这项努力有可能增加对对流动态和过程的理解,并且有可能实施以解决其他规模问题,在这种问题上,它在计算上太昂贵或不切实际,以至于代表比主要网格分辨率要大得多的过程相比,该奖项比NSF的法定任务反映了NSF的法定任务,并通过评估范围来反映了范围的范围。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PrecipGAN: Merging Microwave and Infrared Data for Satellite Precipitation Estimation Using Generative Adversarial Network
- DOI:10.1029/2020gl092032
- 发表时间:2021-03
- 期刊:
- 影响因子:5.2
- 作者:Cunguang Wang;G. Tang;P. Gentine
- 通讯作者:Cunguang Wang;G. Tang;P. Gentine
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Gentine其他文献
Non-Linear Dimensionality Reduction with a Variational Autoencoder Decoder to Understand Convective Processes in Climate Models
使用变分自动编码器解码器进行非线性降维以了解气候模型中的对流过程
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
G. Behrens;T. Beucler;Pierre Gentine;Fernando;Iglesias;Michael S. Pritchard;Veronika Eyring - 通讯作者:
Veronika Eyring
Simulating the Air Quality Impact of Prescribed Fires Using a Graph Neural Network-Based PM2.5 Emissions Forecasting System
使用基于图神经网络的 PM2.5 排放预测系统模拟规定火灾的空气质量影响
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kyleen Liao;Jatan Buch;Kara Lamb;Pierre Gentine - 通讯作者:
Pierre Gentine
An observation-driven optimization method for continuous estimation of evaporative fraction over large heterogeneous areas
一种观测驱动的优化方法,用于连续估计大面积异质区域的蒸发分数
- DOI:
10.1016/j.rse.2020.111887 - 发表时间:
2020-09 - 期刊:
- 影响因子:13.5
- 作者:
Wenbin Zhu;Shaofeng Jia;Upmanu Lall;Yu Cheng;Pierre Gentine - 通讯作者:
Pierre Gentine
Peak growing season patterns and climate extremes-driven responses of gross primary production estimated by satellite and process based models over North America
通过卫星和基于过程的模型估算的北美地区初级生产总值的高峰生长季节模式和极端气候驱动的响应
- DOI:
10.1016/j.agrformet.2020.108292 - 发表时间:
2021-03 - 期刊:
- 影响因子:6.2
- 作者:
Wei He;Weimin Ju;Fei Jiang;Nicholas Parazoo;Pierre Gentine;Wu Xiaocui;Zhang Chunhua;Zhu Jiawen;Nicolas Viovy;Atul K. Jain;Stephen Sitch;Pierre Friedlingstein - 通讯作者:
Pierre Friedlingstein
Uncertainties Caused by Resistances in Evapotranspiration Estimation Using High-Density Eddy Covariance Measurements
使用高密度涡协方差测量估计蒸散量时阻力引起的不确定性
- DOI:
10.1175/jhm-d-19-0191.1 - 发表时间:
2020-05 - 期刊:
- 影响因子:3.8
- 作者:
Wen Li Zhao;Guo Yu Qiu;Yu Jiu Xiong;Kyaw Tha Paw U;Pierre Gentine;Bao Yu Chen - 通讯作者:
Bao Yu Chen
Pierre Gentine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Gentine', 18)}}的其他基金
STC: Center for Learning the Earth with Artificial Intelligence and Physics (LEAP)
STC:利用人工智能和物理学习地球中心 (LEAP)
- 批准号:
2019625 - 财政年份:2021
- 资助金额:
$ 30.74万 - 项目类别:
Cooperative Agreement
Collaborative Research: Dynamics of Unsaturated Downdrafts, Cold Pools, and Their Roles in Convective Initiation and Organization
合作研究:不饱和下降气流、冷池的动力学及其在对流引发和组织中的作用
- 批准号:
1649770 - 财政年份:2017
- 资助金额:
$ 30.74万 - 项目类别:
Continuing Grant
Collaborative Research: Role of Cloud Albedo and Land-Atmosphere Interactions on Continental Tropical Climates
合作研究:云反照率和陆地-大气相互作用对大陆热带气候的作用
- 批准号:
1734156 - 财政年份:2017
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
CAREER: Departure from Monin-Obukhov Similarity Theory (MOST) using high-resolution turbulence models
职业生涯:使用高分辨率湍流模型偏离 Monin-Obukhov 相似理论 (MOST)
- 批准号:
1552304 - 财政年份:2016
- 资助金额:
$ 30.74万 - 项目类别:
Continuing Grant
Summer School in Land-atmosphere Interactions
陆地-大气相互作用暑期学校
- 批准号:
1522174 - 财政年份:2015
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the impacts of atmospheric and land surface heterogeneity and scale on soil moisture-precipitation feedbacks
合作研究:量化大气和地表异质性和规模对土壤湿度-降水反馈的影响
- 批准号:
1035843 - 财政年份:2011
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
相似国自然基金
CASAAV-HDR靶向基因组整合CaMKⅡ抑制肽AIP治疗心力衰竭的研究
- 批准号:82200265
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
CASAAV-HDR靶向基因组整合CaMKⅡ抑制肽AIP治疗心力衰竭的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向LDR立体显示的HDR立体视频版权保护研究
- 批准号:
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
CRISPR/Cas9介导HDR-SSA两步法猪IGF2基因“无缝编辑”新技术研究
- 批准号:31702099
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
单曝光HDR成像关键技术研究
- 批准号:61401072
- 批准年份:2014
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas
HDR DSC:协作研究:创建和整合数据科学团队以提高城市地区的生活质量
- 批准号:
2321574 - 财政年份:2023
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: The Data Science WAV: Experiential Learning with Local Community Organizations
HDR DSC:协作研究:数据科学 WAV:与当地社区组织的体验式学习
- 批准号:
2242944 - 财政年份:2022
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Infusion of data science and computation into engineering curricula
合作研究:HDR DSC:将数据科学和计算融入工程课程
- 批准号:
2123237 - 财政年份:2021
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant
Collaborative Research: HDR DSC: Increasing Accessibility through Building Alternative Data Science Pathways
合作研究:HDR DSC:通过构建替代数据科学途径提高可访问性
- 批准号:
2123259 - 财政年份:2021
- 资助金额:
$ 30.74万 - 项目类别:
Continuing Grant
Collaborative Research: HDR DSC: The Metropolitan Chicago Data Science Corps (MCDC): Learning from Data to Support Communities
合作研究:HDR DSC:芝加哥大都会数据科学队 (MCDC):从数据中学习以支持社区
- 批准号:
2123486 - 财政年份:2021
- 资助金额:
$ 30.74万 - 项目类别:
Standard Grant