RI: Small: Actively Learning From The Crowd

RI:小型:积极向大众学习

基本信息

  • 批准号:
    1816986
  • 负责人:
  • 金额:
    $ 47.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

How can a large number of questions be answered from few and only partially correct responses? This problem lies at the heart of labeling large collections of unlabeled data, which are common in machine learning and data science. It also lies at the heart of learning about preferences of people and quality of items by carrying out surveys. A popular approach to address this problem is to crowdsource the labeling or learning task by paying a large number of people small amounts of money to answer questions on the internet through a crowdsourcing platform. However, the quality of the workers responses varies significantly due to different abilities of the people and difficulties of the questions. To account for the uncertainty of the responses, each question is assigned to multiple people and their responses are aggregated. However, the assignment process is often agnostic to the peoples abilities and questions difficulties, since both are unknown a priori. This project will develop algorithms that adapt to the people and questions and thereby significantly reduces the number of responses required to enable machine learning algorithms to perform well and surveys to be informative. Besides the research objectives, the researchers will pursue educational objectives by integrating parts of this project into a graduate class, promoting undergraduate research, and fostering exchange across disciplines by running an interdisciplinary machine learning seminar. The core optimization problem in crowdsourcing is to achieve confidence in the final answers at minimal cost, by assigning only few tasks to the people (or workers). Intuitively, that can be accomplished by only posing a question to the workers best qualified to answer that question. This project will develop efficient and practical active schemes for crowdlabeling and crowdsourcing that adaptively choose which question to pose to which worker. For each algorithm, the project will prove corresponding rigorous computational and statistical problem-instance dependent performance guarantees, as opposed to worst-case performance guarantees. The theoretical results will be complemented with practical open-source implementations and experiments on real-world data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如何从少数且仅部分正确的答案中回答大量问题?这个问题是对大量未标记数据进行标记的核心,这在机器学习和数据科学中很常见。它也是通过开展调查了解人们的偏好和物品质量的核心。解决这个问题的一种流行方法是众包标记或学习任务,通过众包平台向大量人员支付少量费用来回答互联网上的问题。然而,由于人们的能力不同以及问题的难度不同,工人的回答质量差异很大。为了考虑到答案的不确定性,每个问题都会分配给多个人,并且汇总他们的答案。然而,分配过程往往与人们的能力和问题困难无关,因为两者都是先验未知的。该项目将开发适应人和问题的算法,从而显着减少机器学习算法良好执行和调查提供信息所需的响应数量。除了研究目标之外,研究人员还将通过将该项目的部分内容整合到研究生课程中、促进本科生研究以及通过举办跨学科机器学习研讨会来促进跨学科交流来实现教育目标。众包的核心优化问题是通过只向人们(或工人)分配很少的任务,以最小的成本获得对最终答案的信心。直观地说,只需向最有资格回答该问题的工人提出问题即可实现这一目标。该项目将为众标签和众包开发高效实用的主动方案,自适应地选择向哪个工人提出哪个问题。对于每种算法,该项目将证明相应的严格计算和统计问题实例相关的性能保证,而不是最坏情况的性能保证。理论结果将与实际的开源实现和真实世界数据的实验相补充。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Test-Time Training Can Close the Natural Distribution Shift Performance Gap in Deep Learning Based Compressed Sensing
测试时训练可以缩小基于深度学习的压缩感知中自然分布偏移的性能差距
  • DOI:
  • 发表时间:
    2022-04-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Zalbagi Darestani;Jiayu Liu;Reinhard Heckel
  • 通讯作者:
    Reinhard Heckel
Data augmentation for deep learning based accelerated MRI reconstruction with limited data
基于深度学习的有限数据加速 MRI 重建的数据增强
  • DOI:
    10.1186/s40648-023-00246-y
  • 发表时间:
    2021-06-28
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Zalan Fabian;Reinhard Heckel;M. Soltanolkotabi
  • 通讯作者:
    M. Soltanolkotabi
Regularization-wise double descent: Why it occurs and how to eliminate it
正则化双重下降:为什么会发生以及如何消除它
Measuring Robustness in Deep Learning Based Compressive Sensing
测量基于深度学习的压缩感知的鲁棒性
  • DOI:
  • 发表时间:
    2021-02-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Zalbagi Darestani;A. Chaudhari;Reinhard Heckel
  • 通讯作者:
    Reinhard Heckel
Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation
使用未经训练的神经网络进行压缩感知:梯度下降找到最平滑的近似值
  • DOI:
  • 发表时间:
    2020-05-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reinhard Heckel;M. Soltanolkotabi
  • 通讯作者:
    M. Soltanolkotabi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reinhard Heckel其他文献

A digital twin for DNA data storage based on comprehensive quantification of errors and biases
基于错误和偏差全面量化的 DNA 数据存储数字孪生
  • DOI:
    10.1101/2023.07.04.547683
  • 发表时间:
    2023-07-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andreas L. Gimpel;W. Stark;Reinhard Heckel;R. Grass
  • 通讯作者:
    R. Grass
Toward interpretable predictive models in B2B recommender systems
B2B 推荐系统中的可解释预测模型
  • DOI:
    10.1147/jrd.2016.2602097
  • 发表时间:
    2016-09-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Vlachos;Vassilios G. Vassiliadis;Reinhard Heckel;A. Labbi
  • 通讯作者:
    A. Labbi
Fundamental limits of DNA storage systems
DNA 存储系统的基本限制
Maximizing the robust margin provably overfits on noiseless data
最大化鲁棒裕度可证明在无噪声数据上的溢出
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantin Donhauser;ifrea;Michael Aerni;Reinhard Heckel;Fanny Yang
  • 通讯作者:
    Fanny Yang
Supplementary: Data augmentation for deep learning based accelerated MRI reconstruction with limited data
补充:有限数据下基于深度学习的加速 MRI 重建的数据增强
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zalan Fabian;Reinhard Heckel;M. Soltanolkotabi
  • 通讯作者:
    M. Soltanolkotabi

Reinhard Heckel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Integrated control system for coupled orbit-attitude-structure dynamics of actively deformable solar sails
主动变形太阳帆轨道-姿态-结构耦合动力学集成控制系统
  • 批准号:
    20J01938
  • 财政年份:
    2020
  • 资助金额:
    $ 47.43万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A study of the reflective, actively communicative learning programmes with literary texts in the primary and secondary teacher education in UK
英国中小学教师教育中反思性、积极交流性文学文本学习计划的研究
  • 批准号:
    18K02620
  • 财政年份:
    2018
  • 资助金额:
    $ 47.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Role of Kinesin Motors in Actively Delivering Cargos into Dendritic Spines
驱动蛋白马达在主动将货物输送到树突棘中的作用
  • 批准号:
    9103889
  • 财政年份:
    2015
  • 资助金额:
    $ 47.43万
  • 项目类别:
The Role of Kinesin Motors in Actively Delivering Cargos into Dendritic Spines
驱动蛋白马达在主动将货物输送到树突棘中的作用
  • 批准号:
    8908399
  • 财政年份:
    2015
  • 资助金额:
    $ 47.43万
  • 项目类别:
Regulation of actively proliferating and quiescent intestinal stem cells
活跃增殖和静止肠道干细胞的调节
  • 批准号:
    8917929
  • 财政年份:
    2009
  • 资助金额:
    $ 47.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了