Myo-inositol regulation of myelination in development and hypoxic newborn brain injury
肌醇对发育中髓鞘形成和缺氧新生儿脑损伤的调节
基本信息
- 批准号:9920596
- 负责人:
- 金额:$ 7.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcademiaAddressAdultAutopsyBiological AssayBiologyBiosensorBrainBrain InjuriesCRISPR/Cas technologyCell CountCell physiologyCellsCerebral PalsyChronicClustered Regularly Interspaced Short Palindromic RepeatsCoculture TechniquesCognitiveCognitive deficitsComplicationDataDefectDevelopmentDevelopmental DisabilitiesDiffuseElectron MicroscopyEnvironmentEventGenesGoalsGrowthHumanHuman MilkHypoxiaHypoxic Brain DamageImageImpairmentIn VitroInfantInjuryInositolKnock-outKnockout MiceLearningLengthLifeMass Spectrum AnalysisMeasuresMediatingMembraneMentorshipMothersMotorMusMyelinMyelin SheathNeonatalNeuraxisNeurodevelopmental DisorderNeurogliaNeurologicNeuronsNewborn InfantNutraceuticalNutrientOligodendrogliaOxygenPathway interactionsPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphorylationPremature BirthPremature InfantPreventionRecoveryRecovery of FunctionRegulationResearchResearch PersonnelRodent ModelRoleSignal PathwaySignal TransductionStructureSugar AlcoholsSupplementationTestingTherapeuticThickTissue ModelTrainingWalkingWild Type MouseWritingbasecareer developmentcognitive functionconditional knockoutdeprivationexperimental studyextracellulargain of functionhuman tissuehypoxia neonatorumimprovedin vivoinsightloss of functionlung developmentmotor deficitmouse modelmyelinationneonatal brainnervous system disordernewborn brain injurynovelnutritionnutritional supplementationobject recognitionoligodendrocyte myelinationpostnatalprenatalrepairedskill acquisitionsugartenure tracktherapeutic targetuptakewhite matterwhite matter damagewhite matter injury
项目摘要
Abstract
Diffuse white matter damage, a type of brain injury, commonly occurs with premature birth and is a leading
cause of cerebral palsy and neurodevelopmental disorders. This type of brain injury is often caused by hypoxia
due to immature lung development. Accumulating evidence from both postmortem human tissue and rodent
models suggests delay of glial maturation is a major underlying cause of hypoxia-induced structural and
functional neurological abnormalities. In particular, neonatal hypoxia causes delayed maturation of
oligodendrocytes, the myelin-forming glia of the central nervous system (CNS), and results in myelin defects
and motor and cognitive abnormalities. Human infants typically undergo extensive glial maturation and
myelination during late prenatal and early postnatal life, when nutrition can be supplied solely by the mother.
We have an incomplete understanding of maternally-derived factors that contribute to normal CNS myelination
and which could be safely administered to infants to promote recovery from white matter injury. The goal of
this research is to understand the role of the natural sugar alcohol myo-inositol in regulating signaling
pathways that are essential for normal developmental myelination, and to determine whether supplementation
of myo-inositol can promote recovery from white matter injury caused by chronic neonatal hypoxia. The
central hypothesis is that myo-inositol activates phosphoinositide signaling pathways that promote
oligodendrocyte myelination during development and in white matter injury. We will test this hypothesis in
gain- and loss-of-function studies using in vitro and in vivo rodent models of normal development and chronic
neonatal hypoxia. Aim 1 will test whether oligodendrocyte uptake of myo-inositol drives myelin wrapping during
development by modulating oligodendrocyte phosphoinositide levels. Aim 2 will test whether myo-inositol
rescues myelin defects and promotes functional recovery in chronic neonatal hypoxia by acting directly on
oligodendrocytes. Upon completion these studies will have important implications both for understanding basic
oligodendrocyte biology as well as for potential therapeutics for neonatal white matter injury. In order to
conduct these studies, I will learn electron microscopy, mass spectrometry, and CRISPR-based gene editing
under the guidance of my sponsor, Dr. Chan. I will also receive further training in critical career development
skills such as presentations, scientific writing, and grantsmanship from Dr. Chan and by participating in UCSF
seminars. I am confident that completion of the research goals described here, the mentorship I receive from
Dr. Chan, and the rigorous research environment at UCSF will enable me to achieve my long-term goal of
becoming a tenure-track independent investigator in academia.
抽象的
弥漫性白质损伤是一种脑损伤,常见于早产,是导致早产的主要原因
脑瘫和神经发育障碍的原因。这种类型的脑损伤通常是由缺氧引起的
由于肺部发育不成熟。积累来自死后人体组织和啮齿动物的证据
模型表明,神经胶质成熟的延迟是缺氧引起的结构和功能的主要根本原因。
功能性神经异常。特别是新生儿缺氧会导致发育迟缓。
少突胶质细胞,中枢神经系统 (CNS) 的髓磷脂形成神经胶质细胞,并导致髓磷脂缺陷
以及运动和认知异常。人类婴儿通常会经历广泛的神经胶质成熟和
产前晚期和产后早期的髓鞘形成,此时营养只能由母亲提供。
我们对促进正常中枢神经系统髓鞘形成的母源因素还不完全了解
并且可以安全地给予婴儿以促进白质损伤的恢复。目标是
这项研究旨在了解天然糖醇肌醇在调节信号传导中的作用
正常发育髓鞘形成所必需的途径,并确定是否补充
肌醇可促进新生儿慢性缺氧引起的脑白质损伤的恢复。这
中心假设是肌醇激活磷酸肌醇信号通路,从而促进
发育过程中和白质损伤期间的少突胶质细胞髓鞘形成。我们将在
使用正常发育和慢性的体外和体内啮齿动物模型进行功能获得和丧失的研究
新生儿缺氧。目标 1 将测试少突胶质细胞对肌醇的摄取是否驱动髓磷脂包裹
通过调节少突胶质细胞磷酸肌醇水平来发育。目标 2 将测试肌醇是否
通过直接作用于新生儿慢性缺氧,挽救髓磷脂缺陷并促进功能恢复
少突胶质细胞。完成后,这些研究将对理解基础知识产生重要影响。
少突胶质细胞生物学以及新生儿白质损伤的潜在治疗方法。为了
进行这些研究时,我将学习电子显微镜、质谱和基于 CRISPR 的基因编辑
在我的赞助商陈博士的指导下。我还将接受关键职业发展方面的进一步培训
陈博士以及参与加州大学旧金山分校的项目所提供的演讲、科学写作和资助等技能
研讨会。我有信心完成这里描述的研究目标,以及我收到的指导
陈博士,加州大学旧金山分校严谨的研究环境将使我能够实现我的长期目标
成为学术界的终身教授独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SARAH E RAISSI其他文献
SARAH E RAISSI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SARAH E RAISSI', 18)}}的其他基金
Myo-inositol regulation of myelination in development and hypoxic newborn brain injury
肌醇对发育中髓鞘形成和缺氧新生儿脑损伤的调节
- 批准号:
9760424 - 财政年份:2019
- 资助金额:
$ 7.01万 - 项目类别:
Myo-inositol regulation of myelination in development and hypoxic newborn brain injury
肌醇对发育中髓鞘形成和缺氧新生儿脑损伤的调节
- 批准号:
10553457 - 财政年份:2019
- 资助金额:
$ 7.01万 - 项目类别:
相似海外基金
The role of Trem2-expressing macrophages in atherosclerosis
表达 Trem2 的巨噬细胞在动脉粥样硬化中的作用
- 批准号:
10464928 - 财政年份:2022
- 资助金额:
$ 7.01万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10611440 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10406271 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Chemical Exchange Saturation Transfer (CEST) MRI for the Characterization Small Renal Masses
用于表征小肾脏肿块的化学交换饱和转移 (CEST) MRI
- 批准号:
10209989 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Myo-inositol regulation of myelination in development and hypoxic newborn brain injury
肌醇对发育中髓鞘形成和缺氧新生儿脑损伤的调节
- 批准号:
9760424 - 财政年份:2019
- 资助金额:
$ 7.01万 - 项目类别: