Excellence in Research: Investigation of Small Molecule Adsorption and Conversion on the Semiconductor/Ionic-Liquid Interface and Application to Sensing and Catalysis

卓越研究:半导体/离子液体界面上小分子吸附和转化的研究及其在传感和催化方面的应用

基本信息

  • 批准号:
    1832167
  • 负责人:
  • 金额:
    $ 69.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The detection of small gas molecules is extremely important in industrial, environmental, and other applications. Developing sensors that can measure levels of critical gases with greater sensitivity and selectivity is of great importance in efforts to reduce the amounts of these gases in certain situations. Sensitivity refers to being able to measure very small amounts of the gases and selectivity refers to being able to detect a particular gas when there are many other gases present. In this project funded by the Office of Integrative Activities (OIA)and the Chemical Structure Dynamics and Mechanisms (CSDM-A) program of the Chemistry Division, Drs. Wang, Riley, and Sunda-Meya are using electrochemical, computational, and microscopy methods to develop new sensors, based on ionic liquids, that can measure gas levels with very high sensitivity and selectivity. An ionic liquid is a room-temperature liquid that, instead of neutral molecules, contains ions (charged molecules). The sensors that are being developed to fit into very small devices and can be used in many different places and applications. In addition to the development of sensors, new methods for investigating the strengths of bonds that hold gas molecules together are being designed. The broader impacts of this work are many, as the newly developed sensors can aid in monitoring, ameliorating, and eliminating gases that are harmful to people and the environment. One of the key features of the project is the direct involvement of undergraduates, giving them opportunities to learn many aspects of research in the physical sciences, organization of data, and preparation/presentation of scientific results and conclusions.This project entails both theoretical and experimental studies aimed at investigating the structures of semiconductor/ionic liquid (SC/IL) interfaces, effective selective adsorption on these interfaces, effects of adsorption on adsorbant bond strength, and understanding of the molecular mechanisms involved therein. This is a fundamental study with strong implications for any future projects involving miniaturized sensors, gas separation, or high-performance catalytic conversion utilizing ILs and/or SCs. This systematic research is being conducted using state-of-the-art electrochemical, spectroscopic, surface science, and computational chemistry methods. The main goals of this project are to achieve a greater fundamental understanding of small molecule adsorption at IL/SC interfaces and to explore new chemistry and physics on these interfaces. ILs generate a very unique solid-like interface; consequently, they can generate extremely high electric fields and induce exceptionally large charge densities at the solid/liquid interface. The electric double layer (EDL) charge density can be much higher than traditional field-effects and allows for new levels of electrostatic modulation to be accessible. The pure ionic structure of IL itself also brings an electrostatic environment, which can potentially be manipulated for facilitating certain small molecule activation. However, electrified IL/electrode interfaces, especially SC's, with adsorbed gas molecules have not been either theoretically or experimentally studied. Here the strong interaction granted by SC with the tunability of IL interfaces are exploited in order to achieve and evaluate gas adsorption that is both sensitive and selective by systematically studying adsorption behavior in the IL environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在工业,环境和其他应用中检测小气体分子非常重要。开发可以以更高敏感性和选择性来测量关键气体水平的传感器对于减少某些情况下这些气体量的努力至关重要。敏感性是指能够测量非常少量的气体,而选择性是指在存在许多其他气体时能够检测到特定气体。在该项目中由综合活动办公室(OIA)和化学结构动力学和机制(CSDM-A)计划资助。 Wang,Riley和Sunda-Meya使用电化学,计算和显微镜方法来开发基于离子液体的新传感器,这些传感器可以以非常高的灵敏度和选择性来测量气体水平。离子液体是一种室温液体,代替中性分子含有离子(带电分子)。正在开发的传感器适合非常小的设备,可以在许多不同的地方和应用中使用。除了开发传感器外,还设计了用于研究将气体分子固定在一起的键强度的新方法。这项工作的更广泛影响是很多,因为新开发的传感器可以帮助监测,改善和消除对人们和环境有害的气体。该项目的关键特征之一是本科生的直接参与,使他们有机会学习在物理科学,数据组织中研究的许多方面,以及科学结果和结论的准备/呈现/呈现。该项目旨在进行理论和实验研究,旨在研究对半径液体的结构(sc/sc/sc/sc/sc sc/sc/cortive)的结构(sc/sc/sc/sc sc/sc sc/sc sc/cortive interive)互动(SC/IL)互动。吸附的吸附键强度以及对其中所涉及的分子机制的理解。这是一项基本研究,对利用IL和/或SC的任何涉及微型传感器,气体分离或高性能催化转化的未来项目具有很强的影响。这项系统的研究是使用最先进的电化学,光谱,表面科学和计算化学方法进行的。该项目的主要目标是对IL/SC界面的小分子吸附有了更大的基本了解,并探索这些接口上的新化学和物理。 ILS生成非常独特的固体界面;因此,它们可以产生极高的电场,并在固体/液体界面诱导极大的电荷密度。电动双层(EDL)电荷密度可能比传统的现场效应高得多,并且可以访问新的静电调制水平。 IL本身的纯离子结构还带来了静电环境,可以通过促进某些小分子激活来操纵。但是,带有吸附气体分子的电气IL/电极界面,尤其是SC,尚未在理论上或实验研究。在这里,SC与IL界面的可调性相互作用的强烈互动是被利用的,以实现和评估气体吸附,通过系统地研究IL环境中的吸附行为既敏感又有选择性。这奖反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的crietia crietia crietia crietia criteria crietia criteria crietia crietia crietia criteria crietia crietia crietia crietia crietia crietia cristia cripitia cripitia均值得一提。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania
  • DOI:
    10.30919/esmm5f709
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Das, R.;Vupputuri, S.;Wang, Z.
  • 通讯作者:
    Wang, Z.
Sustainable generator and in-situ monitor for reactive oxygen species using photodynamic effect of single-walled carbon nanotubes in ionic liquids
  • DOI:
    10.1016/j.mtsust.2022.100171
  • 发表时间:
    2022-07-06
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Huang,X.;Witherspoon,E.;Dong,P.
  • 通讯作者:
    Dong,P.
Ionic Liquids as “Green Solvent and/or Electrolyte” for Energy Interface
  • DOI:
    10.30919/es8d0013
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhe Wang;Shu-ang He;V. Nguyen;Kevin E. Riley
  • 通讯作者:
    Zhe Wang;Shu-ang He;V. Nguyen;Kevin E. Riley
Ultra-thin iron phosphate nanosheets for high efficient U(VI) adsorption
超薄磷酸铁纳米片可高效吸附 U(VI)
  • DOI:
    10.1016/j.jhazmat.2019.02.091
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    De Wang;Yanbin Xu;Difei Xiao;Qingan Qiao;Ping Yin;Zhenglong Yang;Jinxing Li;William Winchester;Zhe Wang;Tasawar Hayat
  • 通讯作者:
    Tasawar Hayat
Fentanyl Assay Derived from Intermolecular Interaction-Enabled Small Molecule Recognition (iMSR) with Differential Impedance Analysis for Point-of-Care Testing
源自分子间相互作用的小分子识别 (iMSR) 的芬太尼测定以及用于即时测试的差分阻抗分析
  • DOI:
    10.1021/acs.analchem.2c00017
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Wang, Zhe;Nautiyal, Amit;Alexopoulos, Christopher;Aqrawi, Rania;Huang, Xiaozhou;Ali, Ashraf;Lawson, Katherine E.;Riley, Kevin;Adamczyk, Andrew J.;Dong, Pei
  • 通讯作者:
    Dong, Pei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Riley其他文献

Increasing Success with Online Degree Courses and Programs in the VCCS
通过 VCCS 的在线学位课程和项目提高成功率
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Chatman;Dave Dick;P. Ford;Pamela Henry;Kim Hobert;Miles Keller;Kevin Riley;C. Tidwell;R. Wright
  • 通讯作者:
    R. Wright
Experiences with an Inquiry-Based Ionic Liquid Module in an Undergraduate Physical Chemistry Laboratory
本科生物理化学实验室基于探究的离子液体模块的经验

Kevin Riley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Riley', 18)}}的其他基金

Research Initiation Award: Characterization of Crystal Structures of Novel Materials using State-of the-Art Computational Techniques and Applications
研究启动奖:利用最先进的计算技术和应用表征新型材料的晶体结构
  • 批准号:
    1505219
  • 财政年份:
    2015
  • 资助金额:
    $ 69.98万
  • 项目类别:
    Standard Grant

相似国自然基金

基于复杂抽样和时空效应下卫生服务调查数据的小域估计方法研究
  • 批准号:
    82304238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
海南省儿童急性呼吸道感染病原的分子流行病学调查及基于数学模型的流行特点研究
  • 批准号:
    82360658
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
面向重大灾情精准调查的随机无人机路径规划问题研究
  • 批准号:
    72304049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多元调查数据中统计关联模式的潜变量与图建模研究
  • 批准号:
    12301373
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
身份冲突对消费者决策和行为的影响及机制研究
  • 批准号:
    72302054
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Convergent Engineering and Biomolecular Science
融合工程与生物分子科学
  • 批准号:
    10557613
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Center for Molecular Epidemiology
分子流行病学中心
  • 批准号:
    10630465
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Investigating healthcare for rural females with complex gynecological conditions
农村女性复杂妇科疾病医疗保健调查
  • 批准号:
    10912960
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
UofL RBL Pandemic Preparedness and Response Integrated Research Core
UofL RBL 流行病防范和应对综合研究核心
  • 批准号:
    10793921
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
Project 4: Berto
项目4:贝托
  • 批准号:
    10556545
  • 财政年份:
    2023
  • 资助金额:
    $ 69.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了