Collaborative Research: Intersubband transitions and devices in non-polar strain-compensated InGaN/AlGaN
合作研究:非极性应变补偿 InGaN/AlGaN 中的子带间跃迁和器件
基本信息
- 批准号:1810318
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The scientific objective of this proposal is to develop and test artificial semiconductor nonlinear optical materials and semiconductor quantum cascade lasers based on indium-aluminum-gallium-nitride materials. The indium-aluminum-gallium-nitride materials system has fundamental advantages over the materials that were previously used for making quantum cascade lasers and artificial semiconductor nonlinear optical materials. In particular, indium-aluminum-gallium-nitride semiconductor lasers operating in the terahertz spectral range (frequencies in the range of 1-10 THz) are expected to be able to operate at room temperature, unlike semiconductor lasers previously demonstrated in other materials systems. Room-temperature terahertz semiconductor lasers will have a major transformative impact on the instrumentation operating in this frequency range. Indium-aluminum-gallium-nitride materials are also expected to enable the creation of a novel kind of nonlinear metamaterials for operation at the wavelengths used by fiber-optics telecommunication equipment with sub-1-picosecond response time. Two graduate students will be trained during the course of the program. The two principal investigators will also continue their annual participation in the National Science Foundation research experience for undergraduate program and in various K-12 outreach activities at their institutions. Technical Description. The objective of this proposal is to develop intersubband optoelectronic devices based on strain-compensated InGaN/AlGaN/GaN heterostructures grown on non-polar m-plane GaN substrates for operation in the short-wavelength infrared (wavelengths in the range 1.4-3 microns) and terahertz (wavelengths in the range 30-300 microns) regions of the electromagnetic spectrum. Current intersubband devices rely on materials with relatively low conduction band offsets (1 eV) and low longitudinal optical phonon energies (~30-40 meV) that, respectively, prevent intersubband devices from operating in the short-wavelength infrared and limit the operation of terahertz quantum cascade lasers to cryogenic temperatures. GaN/AlGaN heterostructures grown on c-plane substrates have been previously investigated to overcome the abovementioned problems. GaN-based materials system offers conduction band offsets over 2 eV and have optical phonon energies of ~90 meV. However, strain-dependent piezo-electric fields make it virtually impossible to produce desired intersubband bandstructure in practical devices grown on c-plane substrates. Additionally, relatively small heterostructure thickness, limited by strain, and poor optical field confinement in the heterostructure prevented efficient light-matter interaction in devices reported previously. The proposed AlInGaN heterostructures on m-plane GaN substrates are free from strain-induced fields making reliable intersubband bandstructure design possible. Strain-compensation will be used to overcome critical thickness constrains in materials growth. The heterostructures will be further processed into double-metal plasmonic cavities using photoelectrochemical etching for substrate removal to enable efficient light-matter integration. Two types of intersubband devices will be investigated: double-metal waveguide THz QCLs and intersubband nonlinear metasurfaces for operation in the telecommunication spectral range. The former devices represent a viable path towards developing the first room-temperature electrically pumped semiconductor lasers in the THz spectral range, while the latter devices offer a path for developing intersubband metasurfaces with a giant nonlinear response for short-wavelength infrared.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该提案的科学目标是开发和测试基于氮化铟铝镓材料的人造半导体非线性光学材料和半导体量子级联激光器。与之前用于制造量子级联激光器和人造半导体非线性光学材料的材料相比,铟铝镓氮化物材料系统具有根本优势。特别是,与之前在其他材料系统中演示的半导体激光器不同,在太赫兹光谱范围(频率在1-10 THz范围内)运行的铟铝镓氮化物半导体激光器预计能够在室温下运行。室温太赫兹半导体激光器将对在此频率范围内运行的仪器产生重大变革性影响。铟铝镓氮化物材料还有望创造出一种新型非线性超材料,可在光纤电信设备使用的波长下工作,响应时间低于 1 皮秒。两名研究生将在该计划期间接受培训。两位主要研究人员还将继续每年参与国家科学基金会本科项目的研究经验以及其机构的各种 K-12 外展活动。技术说明。该提案的目标是开发基于在非极性 m 面 GaN 衬底上生长的应变补偿 InGaN/AlGaN/GaN 异质结构的子带间光电器件,用于短波长红外(波长范围为 1.4-3 微米)和电磁波谱的太赫兹(波长在 30-300 微米范围内)区域。当前的子带间器件依赖于具有相对较低导带偏移(1 eV)和低纵向光学声子能量(~30-40 meV)的材料,这分别阻止了子带间器件在短波长红外下工作并限制了太赫兹的工作量子级联激光器至低温。先前已经研究了在c面衬底上生长的GaN/AlGaN异质结构以克服上述问题。 GaN 基材料系统提供超过 2 eV 的导带偏移,并具有约 90 meV 的光学声子能量。然而,应变相关的压电场几乎不可能在 c 面衬底上生长的实际器件中产生所需的子带间能带结构。此外,受应变限制的相对较小的异质结构厚度以及异质结构中较差的光场限制阻碍了先前报道的器件中有效的光与物质相互作用。所提出的 m 面 GaN 衬底上的 AlInGaN 异质结构不受应变感应场的影响,从而使可靠的子带间能带结构设计成为可能。应变补偿将用于克服材料生长中的临界厚度限制。使用光电化学蚀刻去除基板,异质结构将被进一步加工成双金属等离子体腔,以实现有效的光-物质集成。将研究两种类型的子带间器件:双金属波导太赫兹 QCL 和在电信光谱范围内运行的子带间非线性超表面。前一种设备代表了开发第一台太赫兹光谱范围内的室温电泵浦半导体激光器的可行途径,而后一种设备则为开发对短波长红外具有巨大非线性响应的子带间超表面提供了一条途径。该奖项反映了 NSF 的成就法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defect Tolerance of Intersubband Transitions in Nonpolar GaN/(Al,Ga)N Heterostructures: A Path toward Low-Cost and Scalable Mid- to Far-Infrared Optoelectronics
非极性 GaN/(Al,Ga)N 异质结构中子带间跃迁的缺陷容限:通往低成本和可扩展中远红外光电子学的道路
- DOI:10.1103/physrevapplied.16.054040
- 发表时间:2021-11
- 期刊:
- 影响因子:4.6
- 作者:Monavarian, Morteza;Xu, Jiaming;Khoury, Michel;Wu, Feng;De Mierry, Philippe;Vennegues, Philippe;Belkin, Mikhail A.;Speck, James S.
- 通讯作者:Speck, James S.
Structural and optical properties of nonpolar m- and a- plane GaN/AlGaN heterostructures for narrow-linewidth mid-infrared intersubband transitions
用于窄线宽中红外子带间跃迁的非极性 m 面和 a 面 GaN/AlGaN 异质结构的结构和光学特性
- DOI:10.1063/1.5143785
- 发表时间:2020-05
- 期刊:
- 影响因子:4
- 作者:Monavarian, Morteza;Xu, Jiaming;Fireman, Micha N.;Nookala, Nishant;Wu, Feng;Bonef, Bastien;Qwah, Kai S.;Young, Erin C.;Belkin, Mikhail A.;Speck, James S.
- 通讯作者:Speck, James S.
Intersubband Transitions in GaNZAl0.5Ga0.5N Quantum Wells on a-Plane and m-Plane GaN Substrates
a 面和 m 面 GaN 衬底上 GaNZAl0.5Ga0.5N 量子阱中的子带间跃迁
- DOI:10.1364/cleo_at.2020.jth2d.17vvv
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Jiaming Xu; Morteza Monavarian
- 通讯作者:Morteza Monavarian
All-Dielectric Intersubband Polaritonic Metasurface with Giant Second-Order Nonlinear Response
具有巨二阶非线性响应的全电介质子带间极化超表面
- DOI:10.1364/cleo_at.2020.jm1g.4
- 发表时间:2020-01
- 期刊:
- 影响因子:0
- 作者:Sarma, Raktim;Xu, Jiaming;de Ceglia, Domenico;Nookala, Nishant;Carletti, Luca;Campione, Salvatore;Klem, John;Gcnnaro, Sylvain D.;Sinclair, Michael B.;Belkin, Mikhail A.;et al
- 通讯作者:et al
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Wasserman其他文献
Plasmon-enhanced distributed Bragg reflectors
等离子增强分布式布拉格反射器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Morgan Bergthold;Daniel Wasserman;A. Muhowski - 通讯作者:
A. Muhowski
Loss mechanisms in mid-infrared extraordinary optical transmission gratings.
中红外非凡光传输光栅的损耗机制。
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:3.8
- 作者:
T. Ribaudo;B. Passmore;K. Freitas;E. Shaner;J. Cederberg;Daniel Wasserman - 通讯作者:
Daniel Wasserman
High-Performance Quantum Cascade Lasers: Optimized Design Through Waveguide and Thermal Modeling
高性能量子级联激光器:通过波导和热建模优化设计
- DOI:
10.1109/jstqe.2007.906121 - 发表时间:
2007-10-15 - 期刊:
- 影响因子:4.9
- 作者:
Scott S. Howard;Zhijun Liu;Daniel Wasserman;A. J. Hoffman;T. Ko;C. Gmachl - 通讯作者:
C. Gmachl
Anterior capsular tears and loop fixation of posterior chamber intraocular lenses.
前囊撕裂和后房型人工晶状体环固定。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Daniel Wasserman;David J. Apple;V. E. Castaneda;J. Tsai;Robin C. Morgan;E. Assia - 通讯作者:
E. Assia
Enhanced Emission from Ultra-Thin Long Wavelength Infrared Superlattices on Epitaxial Plasmonic Materials
外延等离子体材料上超薄长波长红外超晶格的增强发射
- DOI:
10.1063/1.5132311 - 发表时间:
2019-10-25 - 期刊:
- 影响因子:0
- 作者:
L. Nordin;Kun Li;A. Briggs;E. Simmons;S. R. Bank;V. Podolskiy;Daniel Wasserman - 通讯作者:
Daniel Wasserman
Daniel Wasserman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Wasserman', 18)}}的其他基金
Conference: The Electronic Materials Conference
会议:电子材料会议
- 批准号:
2414428 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Broadening Participation in the 2023 Electronic Materials Conference
扩大2023年电子材料会议参与范围
- 批准号:
2316747 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Broadening Participation in the 2022 Electronic Materials Conference
扩大2022年电子材料会议参与范围
- 批准号:
2219635 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Transforming Photonics and Electronics with Digital Alloy Materials
合作研究:DMREF:用数字合金材料改变光子学和电子学
- 批准号:
2119302 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative research: Mid-IR Photonic Funnels: Coupling, emitting, and re-shaping mid-IR photons in the nano-world
合作研究:中红外光子漏斗:在纳米世界中耦合、发射和重塑中红外光子
- 批准号:
2004422 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
All-Semiconductor Enhanced Efficiency Plasmonic Mid-IR Emitters
全半导体增强效率等离激元中红外发射器
- 批准号:
1926187 - 财政年份:2019
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: Development of Optoelectronic Devices for the Far-Infrared
合作研究:远红外光电器件的开发
- 批准号:
1609912 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
- 批准号:
1711849 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Collaborative Research: A Roadmap Toward Terahertz Optoelectronics Using Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces
合作研究:利用简并半导体界面电荷密度波的主动控制实现太赫兹光电子学的路线图
- 批准号:
1611231 - 财政年份:2016
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
相似国自然基金
少层黑磷量子阱子带间跃迁的红外光谱研究
- 批准号:11874009
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
高工作温度长波红外量子级联探测器关键技术研究
- 批准号:61774151
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
非极性面氮化物子带间跃迁结构外延生长及红外探测器研究
- 批准号:61704003
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
氮化镓基量子阱浅杂质电子激发太赫兹响应的磁控研究
- 批准号:11574166
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
超材料耦合吸收增强量子级联红外探测器研究
- 批准号:61504135
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Early Career Researcher Award
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
- 批准号:
477924 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Salary Programs