Collaborative Research: 1D Nanoconfined Helium: A Versatile Platform for Exploring Luttinger Liquid Physics

合作研究:一维纳米限制氦:探索 Luttinger 液体物理的多功能平台

基本信息

项目摘要

NONTECHNICAL SUMMARYThis award funds a collaborative effort to explore the physics of one-dimensional (1D) systems. Ordinary matter confined in 1D can behave quite differently than in two or three dimensions. Understanding this behavior has become increasingly important as the feature sizes in electronic devices continue to decrease. To explore the effects of confinement in 1D, the research team will use a model system of helium atoms confined in tailored materials with nanometer channels that are only a few atoms wide. This system offers the unique advantage that the interactions of the particles can be varied over a large range: from weak interactions, relevant to trapped atoms used for quantum computing, to strong interactions, as in one-dimensional electronic wires in integrated circuits. Neutron scattering studies which can probe both the structure and motion of the nanoconfined helium will allow the investigators to measure and discover unique physical behavior in one dimension. State-of-the-art computer simulations will be used to perform numerical experiments in tandem with those undertaken in the laboratory, providing an opportunity to test theoretical predictions. This project will also support broad interdisciplinary training of graduate students in sample synthesis and characterization, and in experimental and high-performance computational techniques. In addition, the researchers will develop an online course in Quantum Fluids and Solids, filling an existing curricular gap and engaging with a broad group of students on a topic of fundamental and technological importance.TECHNICAL SUMMARYThis award supports joint experimental and theoretical research to explore quantum many-body physics in one spatial dimension using helium as a model system. One-dimensional systems have been of long-standing interest due to a profound difference from their two- and three-dimensional counterparts, whose properties can be described in terms of quasiparticles. This quasiparticle picture breaks down completely in one dimension where the fundamental excitations are collective and described by the universal Tomonaga-Luttinger-liquid (TLL) theory. The research team will develop, optimize, and explore a novel platform for TLL physics. The project consists of tightly coupled experimental and quantum-simulation research to (1) fabricate ordered templated porous materials preplated with rare-gas adsorbates as a confinement platform exhibiting nanometer-scale pores; (2) Perform elastic neutron scattering measurements of the static correlation function; and (3) Carry out inelastic neutron scattering measurements. The main focus of the research team will be on two areas where theory predicts novel new behavior that has not been verified experimentally: (1) static correlations where TLL predicts an algebraic decay in the correlations even though no true long-range order is possible; and (2) the dynamical excitations of the liquid where a particle-hole-like excitation spectrum is predicted independent of the particle statistics. The integration of ab initio simulations with experimental scattering measurements will yield unambiguous confirmation of exotic field theory predictions in the laboratory.This research will develop a deeper fundamental understanding of a model that is not only central to many areas of current interest, but also has technological applications in nanoelectronics, atomtronics, quantum sensing, and quantum-information science. The project will also provide students with broad interdisciplinary training in synthesis and characterization, low-temperature techniques, x-ray and neutron scattering, use of national facilities, as well as field theory and high-performance computation. In addition, the researchers will develop an online course in Quantum Fluids and Solids, filling an existing curricular gap and engaging with a broad group of students on a topic of fundamental and technological importance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要该奖项资助探索一维 (1D) 系统物理学的合作努力。限制在一维中的普通物质的行为可能与二维或三维中的非常不同。随着电子设备的特征尺寸不断减小,了解这种行为变得越来越重要。为了探索一维约束的影响,研究小组将使用一个氦原子模型系统,该系统将氦原子限制在具有只有几个原子宽的纳米通道的定制材料中。该系统具有独特的优势,即粒子的相互作用可以在很大范围内变化:从与用于量子计算的捕获原子相关的弱相互作用,到强相互作用,如集成电路中的一维电子线。中子散射研究可以探测纳米限制氦的结构和运动,这将使研究人员能够测量和发现一维的独特物理行为。最先进的计算机模拟将用于与实验室进行的数值实验配合进行,从而提供测试理论预测的机会。该项目还将支持研究生在样品合成和表征以及实验和高性能计算技术方面的广泛跨学科培训。此外,研究人员将开发量子流体和固体在线课程,填补现有课程空白,并与广大学生就具有基础和技术重要性的主题进行交流。技术摘要该奖项支持联合实验和理论研究,以探索量子使用氦作为模型系统的一个空间维度的多体物理学。 一维系统长期以来一直受到人们的关注,因为它与二维和三维系统存在显着差异,二维和三维系统的性质可以用准粒子来描述。 这种准粒子图在一维中完全崩溃,其中基本激发是集体的,并由通用的朝永-卢廷格液体(TLL)理论描述。研究团队将开发、优化和探索 TLL 物理的新颖平台。 该项目包括紧密耦合的实验和量子模拟研究,以(1)制造预镀有稀有气体吸附物的有序模板多孔材料,作为表现出纳米级孔隙的限制平台; (2) 进行静态相关函数的弹性中子散射测量; (3)进行非弹性中子散射测量。研究团队的主要关注点将集中在两个领域,其中理论预测了未经实验验证的新行为:(1)静态相关性,其中 TLL 预测相关性的代数衰减,即使不可能存在真正的长程顺序; (2) 液体的动态激发,其中粒子孔状激发光谱的预测与粒子统计无关。 从头算模拟与实验散射测量的集成将在实验室中明确地证实奇异场论预测。这项研究将对模型产生更深入的基础理解,该模型不仅是当前感兴趣的许多领域的核心,而且具有技术性纳米电子学、原子电子学、量子传感和量子信息科学中的应用。该项目还将为学生提供合成和表征、低温技术、X射线和中子散射、国家设施的使用以及场论和高性能计算等方面的广泛跨学科培训。此外,研究人员将开发一门量子流体和固体在线课程,填补现有课程空白,并与广大学生就具有基础和技术重要性的主题进行交流。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Monte Carlo data for 4He inside Ar-Preplated MCM-41 Nanopores
预镀 Ar 的 MCM-41 纳米孔内 4He 的量子蒙特卡罗数据
  • DOI:
    10.5281/zenodo.6012499
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Del; Adrian Maestro
  • 通讯作者:
    Adrian Maestro
Experimental realization of one dimensional helium
一维氦的实验实现
  • DOI:
    10.1038/s41467-022-30752-3
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Del Maestro, Adrian;Nichols, Nathan S.;Prisk, Timothy R.;Warren, Garfield;Sokol, Paul E.
  • 通讯作者:
    Sokol, Paul E.
Parameter-free differential evolution algorithm for the analytic continuation of imaginary time correlation functions
虚数时间相关函数解析延拓的无参数差分进化算法
  • DOI:
    10.1103/physreve.106.025312
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Nichols, Nathan S.;Sokol, Paul;Del Maestro, Adrian
  • 通讯作者:
    Del Maestro, Adrian
Dimensional reduction of helium-4 inside argon-plated MCM-41 nanopores
镀氩 MCM-41 纳米孔内氦 4 的降维
  • DOI:
    10.1103/physrevb.102.144505
  • 发表时间:
    2020-06-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Nathan S. Nichols;T. Prisk;Garfield T. Warren;P. Sokol;A. Del Maestro
  • 通讯作者:
    A. Del Maestro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrian Delmaestro其他文献

Adrian Delmaestro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrian Delmaestro', 18)}}的其他基金

CAREER:Entanglement in strongly interacting quantum liquids and gases
职业:强相互作用的量子液体和气体中的纠缠
  • 批准号:
    2041995
  • 财政年份:
    2020
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a GPU Accelerated Vermont Advanced Computing Core
MRI:购买 GPU 加速的 Vermont 高级计算核心
  • 批准号:
    1827314
  • 财政年份:
    2018
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
CAREER:Entanglement in strongly interacting quantum liquids and gases
职业:强相互作用的量子液体和气体中的纠缠
  • 批准号:
    1553991
  • 财政年份:
    2016
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向二维半导体一步范德华互联的单片三维集成研究
  • 批准号:
    62304075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单一取向CsPbBr3一维光波导阵列在异质半导体低维结构上的面内集成及其在光电互联中的应用研究
  • 批准号:
    62374057
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
α1D/SNTB1/PLCβ3信号小体在结肠癌复发中的作用及机制研究
  • 批准号:
    82303498
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于一维线性结构的氟化电解质设计及在固态高压锂金属电池中的性能研究
  • 批准号:
    52302083
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324369
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324368
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
  • 批准号:
    10572539
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids
DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象
  • 批准号:
    1922312
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
DMREF: Collaborative research: Data driven discovery of synthesis pathways and distinguishing electronic phenomena of 1D van der Waals bonded solids
DMREF:协作研究:数据驱动的合成途径发现和区分一维范德华键合固体的电子现象
  • 批准号:
    1921958
  • 财政年份:
    2019
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了