Stabilization and Circuit Strategies for Enhanced Vapor Sensing with Polymer Semiconductors
聚合物半导体增强蒸汽传感的稳定性和电路策略
基本信息
- 批准号:1807293
- 负责人:
- 金额:$ 43.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical: Sensing of gas-phase compounds is essential for monitoring industrial processes, detecting military and security threats, ensuring air quality, and, most recently, aids medical diagnosis. Small, unobtrusive, and low-cost sensors can be deployed throughout an area or a building and incorporated into wearable electronics. Organic semiconductors (OSCs) are attractive for use in vapor sensors as they can be incorporated into simple devices such as resistors or transistors and are compatible with mechanically flexible substrates and low-cost fabrication processes. The chemical properties of OSCs can be tuned to optimize the response to target gases and control the electronic responses of sensors. One major drawback of OSC-based sensors is the tendency of the output current or voltage to drift over time due to environmental effects such as temperature and humidity or in response to non-target gases (interferents). This project will use chemically stable OSCs and employ them in circuit layouts that minimize the influence of interferents and environmental effects. Progress will be made by combining material synthesis with device fabrication and simulation of devices and circuits. Circuits will be developed that preserve sensitivity while minimizing environmental drift; arrays of these circuits will provide increased selectivity. The project will include multiple outreach efforts. Computer modeling opportunities will be offered to undergraduate and high school students from the underserved Appalachian region anchored by Frostburg State University. A related class will be developed and a summer camp for high school students will be held at Frostburg State University. High school interns will be recruited to Johns Hopkins University from a local high school that serves an underrepresented community. Technical: Sensing of gas-phase compounds is essential for monitoring industrial processes, detecting military and security threats, ensuring air quality, and most recently as a tool in medical diagnosis. The smallest, least intrusive, and lowest cost options can be used for widespread deployment throughout a building or geographic zone or incorporated into wearable electronics. Organic semiconductors (OSCs), including molecules and polymers, have multiple advantages for vapor sensors, as they are compatible with simple sensing circuitry, mechanically flexible substrates, and low-cost fabrication processes. They also have well understood chemical tunability and interactions with gaseous analytes for optimal design and control of the electronic responses to the analytes. They may be incorporated into simple resistive devices, or organic field-effect transistors for cascading in logic circuits. One major drawback of OSC-based sensors is the tendency of the output current or voltage to drift over time, related to their responsiveness to interferents and environmental perturbations, such as humidity and temperature change. This proposal will demonstrate the advantages to be gained by using OSCs with greater chemical stability and employing them in circuit layouts that minimize the influence of interferents and make the responses to analytes more pronounced. Progress will be made by combined efforts in material and device fabrication and in simulation of devices and circuits. The combined material sensitivity to analytes and stability against environmental influences will be optimized. Circuits will be developed that preserve analyte signaling while minimizing the environmental drift. Arrays of these circuits will provide increased selectivity. This work will provide an enabling solution to performance requirements for the adoption of OSC-based sensors in commercial technologies. Electronic device simulation opportunities will be offered to undergraduate and high school students from the underserved Appalachian region anchored by Frostburg State University. Undergraduate students will learn semiconductor device physics, develop computer programming skills, and learn modern device simulation software. High school interns will be recruited to Johns Hopkins University from predominantly female-minority Western High School in Baltimore City.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:气相化合物的传感对于监测工业过程、检测军事和安全威胁、确保空气质量以及最近的辅助医疗诊断至关重要。小型、不显眼且低成本的传感器可以部署在整个区域或建筑物中,并集成到可穿戴电子产品中。有机半导体(OSC)在蒸汽传感器中的应用很有吸引力,因为它们可以合并到电阻器或晶体管等简单设备中,并且与机械柔性基板和低成本制造工艺兼容。可以调整 OSC 的化学性质,以优化对目标气体的响应并控制传感器的电子响应。基于 OSC 的传感器的一个主要缺点是,由于温度和湿度等环境影响或对非目标气体(干扰物)的响应,输出电流或电压容易随时间漂移。该项目将使用化学稳定的OSC,并将其应用于电路布局中,以最大限度地减少干扰和环境影响的影响。通过将材料合成与器件制造以及器件和电路的模拟相结合,将会取得进展。将开发出保持灵敏度的同时最大限度地减少环境漂移的电路;这些电路的阵列将提供更高的选择性。该项目将包括多项外展工作。弗罗斯特堡州立大学将为来自服务欠缺的阿巴拉契亚地区的本科生和高中生提供计算机建模机会。将开发相关课程,并在弗罗斯特堡州立大学举办高中生夏令营。约翰·霍普金斯大学将从为代表性不足的社区服务的当地高中招募高中实习生。技术:气相化合物的传感对于监测工业过程、检测军事和安全威胁、确保空气质量以及最近作为医疗诊断工具至关重要。最小、侵入性最小和成本最低的选项可用于在整个建筑物或地理区域中广泛部署或合并到可穿戴电子产品中。有机半导体(OSC),包括分子和聚合物,对于蒸汽传感器具有多种优势,因为它们与简单的传感电路、机械柔性基板和低成本的制造工艺兼容。它们还具有很好的化学可调性以及与气态分析物的相互作用,以实现对分析物的电子响应的优化设计和控制。它们可以合并到简单的电阻器件或用于级联逻辑电路的有机场效应晶体管中。基于 OSC 的传感器的一个主要缺点是输出电流或电压会随着时间的推移而漂移,这与它们对干扰和环境扰动(例如湿度和温度变化)的响应能力有关。该提案将展示通过使用具有更高化学稳定性的 OSC 并将其应用于电路布局中所获得的优势,从而最大限度地减少干扰物的影响并使对分析物的响应更加明显。通过材料和器件制造以及器件和电路模拟方面的共同努力将取得进展。材料对分析物的敏感性和对环境影响的稳定性将得到优化。将开发保留分析物信号同时最大限度地减少环境漂移的电路。这些电路的阵列将提供更高的选择性。这项工作将为商业技术中采用基于 OSC 的传感器的性能要求提供一个可行的解决方案。弗罗斯特堡州立大学将为来自服务匮乏的阿巴拉契亚地区的本科生和高中生提供电子设备模拟机会。本科生将学习半导体器件物理,培养计算机编程技能,并学习现代器件仿真软件。约翰·霍普金斯大学将从巴尔的摩市以女性为主的西部高中招募高中实习生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhanced and unconventional responses in chemiresistive sensing devices for nitrogen dioxide and ammonia from carboxylated alkylthiophene polymers
化学电阻传感装置对来自羧化烷基噻吩聚合物的二氧化氮和氨的增强和非常规响应
- DOI:10.1039/d0mh00049c
- 发表时间:2020-05-11
- 期刊:
- 影响因子:13.3
- 作者:J. Wagner;H. Jang;Jinfeng Han;H. Katz
- 通讯作者:H. Katz
Simulation of two-transistor parallel and series circuits for gas sensing validated by experimental data
通过实验数据验证的气体传感双晶体管并联和串联电路仿真
- DOI:10.1007/s10825-020-01591-6
- 发表时间:2021-02
- 期刊:
- 影响因子:2.1
- 作者:Wondmagegn, W.;Chu, Yingli;Li, Hui;Katz, Howard E.;Huang, Jia
- 通讯作者:Huang, Jia
Material and circuit design for organic electronic vapor sensors and biosensors
有机电子蒸汽传感器和生物传感器的材料和电路设计
- DOI:10.1117/12.2530058
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Dailey, Jennifer;Li, Hui;Song, Jian;Besar, Kalpana;Jang, Hyun;Chu, Yingli;Katz, Howard E.;Shinar, Ruth;Kymissis, Ioannis;List
- 通讯作者:List
High Signal‐to‐Noise Chemical Sensors Based on Compensated Organic Transistor Circuits
基于补偿有机晶体管电路的高信噪比化学传感器
- DOI:10.1002/admt.201900410
- 发表时间:2019-08-15
- 期刊:
- 影响因子:6.8
- 作者:Yingli Chu;Hui Li;Jia Huang;H. Katz
- 通讯作者:H. Katz
Oxygen-bearing functionalities enhancing NO 2 , NH 3 , and acetone electronic response and response variation by polythiophenes in organic field-effect transistor sensors
含氧官能团增强有机场效应晶体管传感器中聚噻吩的 NO 2 、NH 3 和丙酮电子响应和响应变化
- DOI:10.1039/d1tc04650k
- 发表时间:2022-02
- 期刊:
- 影响因子:6.4
- 作者:Wagner, Justine;Song, Yunjia;Shapiro, Jenna;Katz, Howard E.
- 通讯作者:Katz, Howard E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Howard Katz其他文献
XQuery from the Experts: A Guide to the W3C XML Query Language
专家的 XQuery:W3C XML 查询语言指南
- DOI:
- 发表时间:
2003-09-01 - 期刊:
- 影响因子:0
- 作者:
Howard Katz;D. Chamberlin;M. Kay;P. Wadler;Denise Draper - 通讯作者:
Denise Draper
Howard Katz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Howard Katz', 18)}}的其他基金
CAS: Structure and Mechanism for Energy Capture from Anionic Seebeck Effects in Polymers
CAS:聚合物中阴离子塞贝克效应能量捕获的结构和机制
- 批准号:
2349649 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
- 批准号:
2402407 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
PFI-TT: Plastic Electronic Gas Sensors for Health Monitoring via Mobile Devices
PFI-TT:通过移动设备进行健康监测的塑料电子气体传感器
- 批准号:
2234261 - 财政年份:2023
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
Conjugated Polymers Doped via Covalent Dopant-Molecule Adducts
通过共价掺杂剂分子加合物掺杂的共轭聚合物
- 批准号:
2107360 - 财政年份:2021
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
Receptor Polymers for Enhanced Antibody-Mediated Electronic Neurological Protein Detection
用于增强抗体介导的电子神经蛋白检测的受体聚合物
- 批准号:
1807292 - 财政年份:2018
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
Mutual Synthesis of Conjugated Polymers and Dopants for Well-Ordered Self-Assemblies
共轭聚合物和掺杂剂的相互合成以实现有序自组装
- 批准号:
1708245 - 财政年份:2017
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
Gate-Modulated Charge Density-Dependent Physics of Low-Dimensional Inorganic Semiconductors in Organic Multilayers
有机多层低维无机半导体的栅极调制电荷密度相关物理
- 批准号:
1308142 - 财政年份:2013
- 资助金额:
$ 43.85万 - 项目类别:
Continuing Grant
Solution-Processed Ionically Polarized Oxide Dielectrics and Integrated Electronic Materials for Low-Voltage Transparent Transistors
用于低压透明晶体管的溶液处理离子极化氧化物电介质和集成电子材料
- 批准号:
1005398 - 财政年份:2010
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
Pyromellitic Diimide (PyDI)-Based Molecular and Polymeric Electron-Transporting Semiconductors
均苯四甲酸二酰亚胺 (PyDI) 基分子和聚合物电子传输半导体
- 批准号:
0905176 - 财政年份:2009
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
P-N Interface Probing and Design for Organic/Hybrid Photovoltaics and Circuit Components
有机/混合光伏和电路元件的 P-N 界面探测和设计
- 批准号:
0823947 - 财政年份:2008
- 资助金额:
$ 43.85万 - 项目类别:
Standard Grant
相似国自然基金
基于单级全电容电路的能量采集-电源管理融合策略研究
- 批准号:62101457
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高频GaN栅驱动电路机理与控制策略研究
- 批准号:61974019
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于新型有源功率解耦电路的整流电源及其控制策略研究
- 批准号:51807002
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
多维学习策略下数字集成电路高分辨率诊断模型研究
- 批准号:61702473
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大阵列高速MAPS的压缩采样读出策略及电路架构研究
- 批准号:11705148
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Innovative Double Patterning Strategies for Integrated Circuit Manufacture
集成电路制造的创新双图案化策略
- 批准号:
LP230100313 - 财政年份:2024
- 资助金额:
$ 43.85万 - 项目类别:
Linkage Projects
Multiplex Imaging of Brain Activity and Plasticity with Optimized FRET/FLIM-based Sensors
使用基于 FRET/FLIM 的优化传感器对大脑活动和可塑性进行多重成像
- 批准号:
10516813 - 财政年份:2023
- 资助金额:
$ 43.85万 - 项目类别:
Cortical Circuits Underlying Functional Recovery Following Stroke
中风后功能恢复的皮层回路
- 批准号:
10638607 - 财政年份:2023
- 资助金额:
$ 43.85万 - 项目类别:
Screening using split fluorescent protein tags for neurotransmitter receptors that define a synaptic balance in neuralcircuits
使用分裂荧光蛋白标签筛选神经递质受体,定义神经回路中的突触平衡
- 批准号:
10805112 - 财政年份:2023
- 资助金额:
$ 43.85万 - 项目类别:
Examination of the cell biology of the synapse and behavior
突触和行为的细胞生物学检查
- 批准号:
10663514 - 财政年份:2023
- 资助金额:
$ 43.85万 - 项目类别: